• Title/Summary/Keyword: Main Air-ratio

Search Result 286, Processing Time 0.027 seconds

Spalling Properties of 60, 80MPa High Strength Concrete with Fiber (복합섬유(PP, NY)를 혼입한 60, 80MPa 3성분계 고강도콘크리트의 내화특성)

  • Kim, Seong-Deok;Kim, Sang-Yun;Bae, Ki-Sun;Park, Su-Hee;Lee, Bum-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.3-9
    • /
    • 2010
  • Fire resistance and material properties of high-strength concrete (W/B 21.5%, 28.5%) with OPC, BS and FA were tested in this study. Main factors of the test consisted of fiber mixing ratio and W/B. Two types of fiber (NY, PP) mixed with the same weight were used for the test. The fiber mixing ratios were 0%, 0.05%, 0.1%, and 0.2% of the concrete weight. After performing the test, Under the W/B level of 21.5% and 28.5%, the spalling was effectively resisted by using the high strength concrete with fiber mixing ratios of 0.05%~0.1%. Compressive strength, flowability and air content are similar those of the fiberless high-strength concrete with the same W/B.

Development of Land fog Detection Algorithm based on the Optical and Textural Properties of Fog using COMS Data

  • Suh, Myoung-Seok;Lee, Seung-Ju;Kim, So-Hyeong;Han, Ji-Hye;Seo, Eun-Kyoung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.359-375
    • /
    • 2017
  • We developed fog detection algorithm (KNU_FDA) based on the optical and textural properties of fog using satellite (COMS) and ground observation data. The optical properties are dual channel difference (DCD: BT3.7 - BT11) and albedo, and the textural properties are normalized local standard deviation of IR1 and visible channels. Temperature difference between air temperature and BT11 is applied to discriminate the fog from other clouds. Fog detection is performed according to the solar zenith angle of pixel because of the different availability of satellite data: day, night and dawn/dusk. Post-processing is also performed to increase the probability of detection (POD), in particular, at the edge of main fog area. The fog probability is calculated by the weighted sum of threshold tests. The initial threshold and weighting values are optimized using sensitivity tests for the varying threshold values using receiver operating characteristic analysis. The validation results with ground visibility data for the validation cases showed that the performance of KNU_FDA show relatively consistent detection skills but it clearly depends on the fog types and time of day. The average POD and FAR (False Alarm Ratio) for the training and validation cases are ranged from 0.76 to 0.90 and from 0.41 to 0.63, respectively. In general, the performance is relatively good for the fog without high cloud and strong fog but that is significantly decreased for the weak fog. In order to improve the detection skills and stability, optimization of threshold and weighting values are needed through the various training cases.

Turbulent Dispersion Behavior of a Jet issued into Thermally Stratified Cross Flows (II) (열적으로 성충화된 횡단류에 분류된 제트의 난류확산 거동 (II))

  • Kim, Sang Ki;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1434-1443
    • /
    • 1999
  • The turbulent fluctuations of temperature and two components of velocity have been measured with hot- and cold-wires in the Thermally Stratified Wind Tunnel(TSWT). Using the fin-tube heat exchanger type heaters and the neural network control algorithm, both stable ($dT/dz=109.4^{\circ}C$) and unstable ($dT/dz=-49.1^{\circ}C$) stratifications were realized. An ambient air jet was issued normally into the cross flow($U_{\infty}=1.0 m/s$) from a round nozzle(d = 6 mm) flushed at the bottom waII of the wind tunnel with the velocity ratio of $5.8(U_{jet}/U_{\infty})$. The characteristics of turbulent dispersion in the cross flow jet are found to change drastically depending on the thermal stratification. Especially, in the unstable condition, the vertical velocity fluctuation increases very rapidly at downstream of jet. The fluctuation velocity spectra and velocity-temperature cospectra along the jet centerline were obtained and compared. In the case of stable stratification, the heat flux cospectra changes Its sign from a certain point at the far field because of the restratification phenomenon. It is inferred that the main reason in the difference between the vertical heat fluxes is caused by the different length scales of the large eddy motions. The turbulent kinetic energy and scalar dissipation rates were estimated using partially non-isotropic and isotropic turbulent approximation. In the unstable case, the turbulent energy dissipation decreases more rapidly with the downstream distance than in the stable case.

Design of Circular Patch Antenna for 1.6G Hz band Satellite Navigation System (1.6 GHz대역 위성항법 시스템용 원형 패치 안테나 설계)

  • Kang, NyoungHak;Rhee, Seung-Yeop;Yeo, Junho;Lee, Jong-Ig;Kim, GunKyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.63-64
    • /
    • 2018
  • In this study, a design method for a circular polarization patch antenna operating at a frequency 1.5 GHz~1.7 GHz was studied. To obtain the wide bandwidth and high gain, air substrate between patch and ground plane was applied. The impedance bandwidth is improved by adjusting the sizes of patch, the distance between main patch and ground plate, the length of internal slots, the position of feeding point, the length of external stub, etc. The antenna is designed and simulated for an operation in the frequency range of 1.5GHz~1.7GHz band. The results show that antenna characteristics such as return loss, gain, axial ratio, radiation patterns are appropriate for the satellite navigation system.

  • PDF

Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators with Magneto-Rheological Brake

  • Thanh, Tu Diep Cong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1983-1989
    • /
    • 2005
  • Industrial robots are powerful, extremely accurate multi-jointed systems, but they are heavy and highly rigid because of their mechanical structure and motorization. Therefore, sharing the robot working space with its environment is problematic. A novel pneumatic artificial muscle actuator (PAM actuator) has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. Its main advantages are high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks. The PAM is undoubtedly the most promising artificial muscle for the actuation of new types of industrial robots such as Rubber Actuator and PAM manipulators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In addition, the nonlinearities in the PAM manipulator still limit the controllability. Therefore, it is not easy to realize motion with high accuracy and high speed and with respect to various external inertia loads in order to realize a human-friendly therapy robot To overcome these problems a novel controller, which harmonizes a phase plane switching control method with conventional PID controller and the adaptabilities of neural network, is newly proposed. In order to realize satisfactory control performance a variable damper - Magneto-Rheological Brake (MRB) is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control using neural network brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control using neural network and without regard for the changes of external inertia loads.

  • PDF

The Ejector Design and Test for 125 kW Class Molten Carbonate Fuel Cell System (125 kW급 용융탄산염 연료전지 시스템의 이젝터 설계 및 시험)

  • KIM, BEOMJOO;PARK, SOO-MAN;SONG, OH-SEOP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.139-147
    • /
    • 2018
  • Korea Electric Power Research Institute (KEPCO RI) had developed molten carbonate fuel cell (MCFC) system since 1993. Finally, KEPCO RI developed and operated a 125 kW MCFC system in 2010. To make MCFC system compact, it is indispensable to install an ejector in this system where the anode off gas, the cathode off gas, and fresh air are mixed before flowing to the catalytic burner. KEPCO RI had developed various ejectors for MCFC system since 2006. The 125 kW MCFC system built with the developed ejector was operated successfully in Boryeong Thermal Power Plant in 2010. This 125 kW MCFC ejector was designed on the basis of the experimental results of 5 kW and 75 kW MCFC ejectors. The main goal of ejector design in our MCFC system is to maintain the entrainment ratio and the pressure between fuel cell stack and catalytic burner within the operating range. In this paper, the design results of the ejector are presented based on the 125 kW MCFC system operating conditions. In addition, a designed ejector was manufactured and installed in the MCFC system. As the fuel cell is under load operation, the pressure surrounding the ejector was measured to ensure that the fuel cell system is operating smoothly.

Performance analysis of an experimental plant factory

  • Ryu, Dong-Ki;Kang, Sin-Woo;Chung, Sun-Ok;Hong, Soon-Jung
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.395-403
    • /
    • 2013
  • Plant factory has drawn attention in many countries in the world due to capability of environmental control not only for better yield and quality, but also for increase in functional and medicinal components of the products. In this paper, an experimental plant factory was constructed for various tests under different environmental conditions, and the operations were evaluated. A production room was constructed with adiabatic materials with dimensions of $6,900{\times}3,000{\times}2,500$ mm ($L{\times}W{\times}H$). Four sets of $2,890{\times}600{\times}2,320$ mm ($L{\times}W{\times}H$) production frame unit, each with 9 light-installed beds and an aeroponic fertigation system, resulting in 36 beds, were prepared. Accuracy and response were evaluated for each environmental control component with and without crops. Air temperature, humidity, $CO_2$ concentration, light intensity, frequency, and duty ratio, fertigation rate and scheduling were controllable from a main control computer through wireless communication devices. When the plant factory was operated without crop condition, the response times were 8 minutes for change in temperature from 20 to $15^{\circ}C$ and 20 minutes from 15 to $20^{\circ}C$; 7 minutes for change in humidity from 40 to 65%; and 4 minutes for change in $CO_2$ concentration from 450 to 1000 ppm. When operated for 24 hours with crop cultivation; average, maximum, and minimum values of temperatures were 20.06, 20.8, and $18.8^{\circ}C$; humidity were 66.72, 69.37, and 63.73%; $CO_2$ concentrations were 1017, 1168, and 911 ppm, respectively. Photosynthetic Photon Flux Density was increased as the distance from the light source decreased, but variability was greater at shorter distances. Results of the study would provide useful information for efficient application of the plant factory and to investigate the optimum environment for crop growth through various experiments.

Basic Experiment of P8250 Educational Engine Performance (P8250 학습용 엔진성능의 기초 실험)

  • Lim, Chang-Su;Choi, Jun-Seop;Wang, So-Rang
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.218-231
    • /
    • 2008
  • The purpose of this study was made for the pre-teacher of university to enhance understanding for the concept of engine performance and to provide information regarding engine performance in the institute of teacher educator. This study was carried out through engine performance experiment with The Cussons Engine Test Bed P8250, internal combustion engine, in order to analyze data quantitatively, and apply and verify factors of controlling engine performance. The main results of this study are as follows: First, power and brake horsepower increased linearly, and torque over the mid-speed as engine rps(revolution per second) decreased. Second, the change of torque and specific fuel consumption were able to be verified and the concept of engine performance was able to be understood. Third, the experimental values of brake horsepower and torque on engine performance showed the same tendency as theoretical values. Fourth, air/fuel ratio increased proportionally as engine speed increased.

Emission Characteristics of Odorous Gases with the Decay of Albumin and Yolk of Boiled Egg (삶은 달걀의 부패에 따른 부위별 냄새물질의 발생특성 연구)

  • Kim, Bo-Won;Kim, Ki-Hyun;Kim, Yong-Hyun;Ahn, Jeong-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.95-109
    • /
    • 2014
  • In this study, the concentration of odorants released from albumin (EA) and yolk (EY) portions of boiled egg samples were determined as a function of storage time. The concentrations were measured at storage days of 0, 1, 3, 6, and 9 under room temperature. As such, odorants produced during both fresh and decay conditions were measured through time. A total of 19 compounds were selected as the main target odorants along with 12 reference compounds. GC-MS (for VOC) and GC-PFPD system (for sulfur gases) equipped with thermal desorption (TD) system were employed for odorant analysis in this work. The initial concentrations measured from the chamber system were converted into flux terms ($ng{\cdot}g^{-1}{\cdot}min^{-1}$). The EA showed the highest concentration of $H_2S$ (234 $ng{\cdot}g^{-1}{\cdot}min^{-1}$) at EA-0, and the concentrations of AT (Acetone) was also seen clearly in the range of 11.7 (EA-0) to 58.6 $ng{\cdot}g^{-1}{\cdot}min^{-1}$ (EA-9). The EY showed similar patterns. EtAl (Ethyl alcohol) increased 9.47 (EA-1) to 96.7 $ng{\cdot}g^{-1}{\cdot}min^{-1}$ (EA-9) in EA samples. Ketone, alcohol, sulfur groups generally exhibited high concentrations compared to other odorants. These data were also compared in relation to olfactometry related dilution-to-threshold (D/T) ratio by air dilution sensory (ADS) test and sum of odor intensity (SOI).

The removal characteristics of No, SOx for plasma reactor separated flue gas duct from discharge domain (연소가스관로와 방전영역 분리형 플라즈마 반응기에서 Nox, SOx 제거특성)

  • Park, J.Y.;Koh, Y.S.;Lee, J.D.;Song, W.S.;Park, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2007-2009
    • /
    • 1999
  • In this paper, discharge domain of wire-cylindrical plasma reactor was separated from a gas flow duct to avoid unstable discharge by aerosol particle deposited on discharge electrode and grounded electrode. The NOx, SOx removal was experimentally investigated by a reaction induced to ammonium nitrate, ammonium sulfate using a low price of aqueous NaOH solution and a small quantity of ammonia. Volume percentage of aqueous NaOH solution used was 20% and $N_2$ flow rate was 2.5[$\ell$/min] for bubbling aqueous NaOH solution. Ammonia gas(14.82%) balanced by argon was diluted by air and was introduced to a main simulated flue gas duct through $NH_3$ injection system which was in downstream of reactor. The $NH_3$ molecular ratio[MR] was determined based on $NH_3$ to [NO+$SO_2$]. MR is 1.5. The NOx removal rates increased in the order of DC, AC and pulse, but SOx removal rates was not significantly effected by source of electricity. The NOx removal rate slightly decreased with increasing initial concentration but SOx removal rate was not significantly effect by initial concentration, and NOx, SOx removal rates decreased with increasing gas flow rate.

  • PDF