• Title/Summary/Keyword: Mahindra & Mahindra

Search Result 7, Processing Time 0.015 seconds

Case Study On Knowledge Management Practices In Indian Manufacturing Organizations - Tata Motors, BHEL And Mahindra And Mahindra

  • Rangnekar, Santosh
    • Journal of Digital Convergence
    • /
    • v.8 no.1
    • /
    • pp.27-40
    • /
    • 2010
  • This case study covers the Knowledge Management research paper that explores the clear idea about the knowledge practicesthat are used in the corporate sector to achieve the strategic advantage over the competitors. The quoted example of the three manufacturing firms TATA MOTORS, BHEL, and M&M have tried to compare the Knowledge practices in these firms, which explores the concept clearer that the competitors can use the same or the different type of knowledge practices to achieve the competitor advantages. In order to help knowledge management goals, an integrated knowledge management system consisting of the knowledge management techniques and technologies are used. The knowledge Management is supported by different techniques and practices whichare knowledge content, people skills, technology and strategy based. The technology and techniques supports these factors of knowledge management. The paper discuss different techniques and processes adapted by three Indian organizations and a comparison is made to suggest the guidelines of KM practices to manufacturing Industries.

  • PDF

Brand Revitalization by Strategic Repositioning: A Case Study of Korando Sports

  • Shin, Youngsik;Cha, Kyoung Cheon
    • Asia Marketing Journal
    • /
    • v.14 no.4
    • /
    • pp.1-22
    • /
    • 2013
  • A growing gap between market needs and the capabilities of the enterprise prompts repositioning (Corstjens and Dolye 1989). This article examines the strategic repositioning of 'Korando Sports' undertaken by SYMC throughout the period from Jan. 2012 to Jun. 2012, to boost sales volume and market share by entering market of active-lifestyle consumers currently occupied by SUVs. SYMC's experience indicates that it is essential to close the gap between the market needs and the ability of the enterprise to make a shift to new consumer segment with a new positioning. The successful repositioning framework(Ryan et al. 2007) were employed in this paper. This framework is comprised of six elements: core strategic values, strategic flexibility/learning capabilities, customer awareness and sensitivity, external orientation, management commitment, and belief in the product and brand. The evaluation based on the successful framework also confirms that 'Korando Sports' case meets all the requirements of the successful strategic repositioning. This paper provides some of the managerial implications with aim of assisting executives in identifying strategic repositioning opportunities. Primarily, the 'Korando Sports' case affirms the repositioning as a viable strategy and indicates that repositioning is a feasible means for strategic change. Second, this case shows the influence of a target consumer and SYMC's repositioning to follow consumer preference for a particular attribute. Moreover, we can understand how a product formerly considered weak in attributes can enjoy benefits in other segments with the same attributes.

  • PDF

Pyroeffects on magneto-electro-elastic sensor bonded on mild steel cylindrical shell

  • Kondaiah, P.;Shankar, K.;Ganesan, N.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.537-554
    • /
    • 2015
  • Magneto-electro-elastic (MEE) materials under thermal environment exhibits pyroelectric and pyromagnetic coefficients resulting in pyroeffects such as pyroelectric and pyromagnetic. The pyroeffects on the behavior of multiphase MEE sensor bonded on top surface of a mild steel cylindrical shell under thermal environment is presented in this paper. The study aims to investigate how samples having different volume fractions of the multiphase MEE sensor behave due to pyroeffects using semi-analytical finite element method. This is studied at an optimal location on a mild steel cylindrical shell, where the maximum electric and magnetic potentials are induced due to these pyroeffects under different boundary conditions. It is assumed that sensor and shell is perfectively bonded to each other. The maximum pyroeffects on electric and magnetic potentials are observed when volume fraction is $v_f$ = 0.2. Additionally, the boundary conditions significantly influence the pyroeffects on electric and magnetic potentials.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

Pyroeffects on Magneto-Electro-Elastic Sensor patch subjected to thermal load

  • Kondaiah, P.;Shankar, K.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.299-307
    • /
    • 2017
  • The magneto-electro-elastic (MEE) material under thermal environment exhibits pyroelectric and pyromagnetic coefficients resulting in pyroelectric and pyromagnetic effects. The pyroelectric and pyromagnetic effects on the behavior of multiphase MEE sensors bonded on top surface of a mild steel beam under thermal environment is presented in this paper. The aim of the study is to find out how samples having different volume fractions of the multiphase MEE composite behave in sensor applications. This is studied at optimal location on the beam, where the maximum electric and magnetic potentials are induced due to pyroelectric and pyromagnetic effects under clamped-free and clamped-clamped boundary conditions. The sensor which is bonded on the top surface of the beam is modeled using 8-node brick element. The MEE sensor bonded on mild steel beam is subjected to uniform temperature rise of 50K. It is assumed that beam and sensor is perfectly bonded to each other. The maximum pyroelectric and pyromagnetic effects on electric and magnetic potentials are observed when volume fraction is ${\nu}_f=0.2$. The boundary conditions significantly influence the pyroelectric and pyromagnetic effects on electric and magnetic potentials.

Development of Powder Injection Molding Process for a Piezoelectric PAN-PZT Ceramics

  • Han, Jun Sae;Park, Dong Yong;Lin, Dongguo;Chung, Kwang Hyun;Bollina, Ravi;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • A powder injection molding process is developed and optimized for piezoelectric PAN-PZT ceramics. Torque rheometer experiments are conducted to determine the optimal solids loading, and the rheological property of the feedstock is evaluated using a capillary rheometer. Appropriate debinding conditions are chosen using a thermal gravity analyzer, and the debound specimens are sintered using sintering conditions determined in a preliminary investigation. Piezoelectric performance measures, including the piezoelectric charge constant and dielectric constant, are measured to verify the developed process. The average values of the measured piezoelectric charge constant and dielectric constant are 455 pC/N and 1904, respectively. Powder injection molded piezoelectric ceramics produced by the optimized process show adequate piezoelectric performance compared to press-sintered piezoelectric ceramics.

Numerical optimization of flow uniformity inside an under body- oval substrate to improve emissions of IC engines

  • Om Ariara Guhan, C.P.;Arthanareeswaran, G.;Varadarajan, K.N.;Krishnan, S.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.198-214
    • /
    • 2016
  • Oval substrates are widely used in automobiles to reduce the exhaust emissions in Diesel oxidation Catalyst of CI engine. Because of constraints in space and packaging Oval substrate is preferred rather than round substrate. Obtaining the flow uniformity is very challenging in oval substrate comparing with round substrate. In this present work attempts are made to optimize the inlet cone design to achieve the optimal flow uniformity with the help of CATIA V5 which is 3D design tool and CFX which is 3D CFD tool. Initially length of inlet cone and mass flow rate of exhaust stream are analysed to understand the effects of flow uniformity and pressure drop. Then short straight cones and angled cones are designed. Angled cones have been designed by two methodologies. First methodology is rotating flow inlet plane along the substrate in shorter or longer axis. Second method is shifting the flow inlet plane along the longer axis. Large improvement in flow uniformity is observed when the flow inlet plane is shifted along the direction of longer axis by 10, 20 and 30 mm away from geometrical centre. When the inlet plane is rotated again based on 30 mm shifted geometry, significant improvement at rotation angle of $20^{\circ}$ is observed. The flow uniformity is optimum when second shift is performed based on second rotation. This present work shows that for an oval substrate flow, uniformity index can be optimized when inlet cone is angled by rotation of flow inlet plane along axis of substrate.