• Title/Summary/Keyword: Magnetron sputtering system

Search Result 525, Processing Time 0.029 seconds

The invariant design of planar magnetron sputtering TFT-LCD

  • Yoo, W.J.;Demaray, E.;Hosokawa;Pethe, R.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.2
    • /
    • pp.101-106
    • /
    • 1999
  • The main consideration factor to design a magnetron of the sputtering system for TFT-LCD metallization is high sheet resistance (Rs) uniformity which is provided by the high target erosion and high current efficiency. The present study has developed a rectangular magnetron for TFT-LCD to bve considered full target erosion and high film uniformity. After an aluminum-2 at.% and alloy target was installed in a magnetron source and the film was deposited on the glass of 600${\times}$720 mm, the Rs uniformity of the deposited film was measured as functions of the magnet tilt and magnet scanning configuration. And the target erosion profile was observed with the target voltage. When sputtered at 4mtorr and 10kW, the magnet tilt for the high Rs uniformity of 8.38% was 7mm. The plasma voltage at the dwell home and end for full-face target erosion, when scanned the magnetron was 120% compared to the mean voltage of the other area.

  • PDF

Surface Characteristics of Titanium/Hydroxyapatite Double Layered Coating on Orthopedic PEEK by Magnetron Sputtering System (마그네트론 스퍼터링 시스템을 이용한 정형외과용 PEEK의 타이타늄/하이드록시아파타이트 이중 코팅층의 표면 특성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.3
    • /
    • pp.164-171
    • /
    • 2018
  • In this study, we have fabricated pure titanium (Ti)/hydroxyapatite (HA) double layer coating on medical grade PEEK from magnetron sputtering system, an investigation was performed whether the surface can be had more improve bio-active for orthopedi/dental applications than that of non-coated one. Pure Ti and HA coating layer were obtained by a radio-frequency and direct current power magnetron sputtering system. The microstructures surface, mechanical properties and wettability of the pure Ti/HA double layer deposited on the PEEK were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), nano-indentation, and contact angle test. According to the EDS and XRD results, the composition and crystal structure of pure Ti and HA coated surface were verified. The elastic modulus and hardness value were increased by pure Ti and HA coating, and the pure Ti/HA double layer coating surface has the highest value. The contact angle showed higher value for pure Ti/HA double layered coating specimens than that of non-coated (PEEK) surface.

Structural and Electrical Properties of a-axis ZnO:Al Thin Films Grown by RF Magnetron Sputtering

  • Bong, Seong-Jae;Kim, Seon-Bo;An, Si-Hyeon;Park, Hyeong-Sik;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.329.1-329.1
    • /
    • 2014
  • In this paper, we report electrical, optical and structural properties of Al-doped zinc oxide (AZO) thin films deposited at different substrate temperatures and pressures. The films were prepared by radio frequency (RF) magnetron sputtering on glass substrates in argon (Ar) ambient. The X-ray diffraction analysis showed that the AZO films deposited at room temperature (RT) and 20 Pa were mostly oriented along a-axis with preferred orientation along (100) direction. There was an improvement in resistivity ($3.7{\times}10^{-3}{\Omega}-cm$) transmittance (95%) at constant substrate temperature (RT) and working pressure (20 Pa) using the Hall-effect measurement system and UV-vis spectroscopy, respectively. Our results have promising applications in low-cost transparent electronics, such as the thin-film solar cells and thin-film transistors due to favourable deposition conditions. Furthermore our film deposition method offers a procedure for preparing highly oriented (100) AZO films.

  • PDF

Effect of Heat Treatment Method on Properties of ZnO Thin Films Deposited by RF Magnetron Sputtering

  • Kim, Deok Kyu
    • Applied Science and Convergence Technology
    • /
    • v.26 no.2
    • /
    • pp.30-33
    • /
    • 2017
  • ZnO thin films which were deposited by RF magnetron sputtering system were annealed by furnace and insitu heat treatment methods. We investigated the effect of heat treatment method on physical properties of ZnO thin films. The structural and optical properties of ZnO thin films were improved by heat treatment. Through the annealing treatment of ZnO film by furnace, the good crystallinity and ultraviolet emission were obtained. These results are attributed to the improved formation of Zn-O bond in ZnO thin film annealed at by furnace. We confirm that the formation of Zn-O bond plays an important role in obtaining the excellent structural and optical properties of ZnO thin films.

The Properties of Multi-Layered Optical Thin Films Fabricated by Pulsed DC Magnetron Sputtering (Pulsed DC 마그네트론 스퍼터링으로 제조된 다층 광학박막의 특성)

  • Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.211-226
    • /
    • 2019
  • Optical thin films were deposited by using a reactive pulsed DC magnetron sputtering method with a high density plasma(HDP). In this study, the effect of sputtering process conditions on the microstructure and optical properties of $SiO_2$, $TiO_2$, $Nb_2O_5$ thin films was clarified. These thin films had flat and dense microstructure, stable stoichiometric composition at the optimal conditions of low working pressure, high pulsed DC power and RF power(HDP). Also, the refractive index of the $SiO_2$ thin films was almost constant, but the refractive indices of $TiO_2$ and $Nb_2O_5$ thin films were changed depending on the microstructure of these films. Antireflection films of $Air/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/Glass$ structure designed by Macleod program were manufactured by our developed sputtering system. Transmittance and reflectance of the manufactured multilayer films showed outstanding value with the level of 95% and 0.3%, respectively, and also had excellent durability.

Effect of negative oxygen ion bombardment on the gate bias stability of InGaZnO

  • Lee, Dong-Hyeok;Kim, Gyeong-Deok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.160-160
    • /
    • 2015
  • InGaZnO (IGZO) thin-film transistors (TFTs) are very promising due to their potential use in high performance display backplane [1]. However, the stability of IGZO TFTs under the various stresses has been issued for the practical IGZO applications [2]. Up to now, many researchers have studied to understand the sub-gap density of states (DOS) as the root cause of instability [3]. Nomura et al. reported that these deep defects are located in the surface layer of the IGZO channel [4]. Also, Kim et al. reported that the interfacial traps can be affected by different RF-power during RF magnetron sputtering process [5]. It is well known that these trap states can influence on the performances and stabilities of IGZO TFTs. Nevertheless, it has not been reported how these defect states are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOI) can be generated by electron attachment in oxygen atom near target surface and accelerated up to few hundreds eV by self-bias of RF magnetron sputter; the high energy bombardment of NOIs generates bulk defects in oxide thin films [6-10] and can change the defect states of IGZO thin film. In this study, we have confirmed that the NOIs accelerated by the self-bias were one of the dominant causes of instability in IGZO TFTs when the channel layer was deposited by conventional RF magnetron sputtering system. Finally, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process [9-10] to eliminate the NOI bombardment effects and present how much to be improved the instability of IGZO TFTs by this new deposition method.

  • PDF

Thin Film Transistor Characteristics with ZnO Channel Grown by RF Magnetron Sputtering (RF Magnetron Sputtering으로 증착된 ZnO의 증착 특성과 이를 이용한 Thin Film Transistor특성)

  • Kim, Young-Woong;Choi, Duck-Kyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.15-20
    • /
    • 2007
  • Low temperature processed ZnO-TFTs on glass below $270^{\circ}C$ for plastic substrate applications were fabricated and their electrical properties were investigated. Films in ZnO-TFTs with bottom gate configuration were made by RF magnetron sputtering system except for $SiO_2$ gate oxide deposited by ICP-CVD. ZnO channel films were grown on glass with various Ar and $O_2$ flow ratios. All of the fabricated ZnO-TFTs showed perfectly the enhancement mode operation, a high optical transmittance of above 80% in visible ranges of the spectrum. In the ZnO-TFTs with pure Ar process, the field effect mobility, threshold voltage, and on/off ratio were measured to be $1.2\;cm^2/Vs$, 8.5 V, and $5{\times}10^5$, respectively. These characteristic values are much higher than those of the ZnO-TFTs of which ZnO channel layers were processed with additional $O_2$ gas. In addition, ZnO-TFT with pure Af process showed smaller swing voltage of 1.86v/decade compared to those with $Ar+O_2$ process.

  • PDF

Effect of Negative Oxygen Ions Accelerated by Self-bias on Amorphous InGaZnO Thin Film Transistors

  • Kim, Du-Hyeon;Yun, Su-Bok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.466-468
    • /
    • 2012
  • Amorphous InGaZnO (${\alpha}$-IGZO) thin-film transistors (TFTs) are are very promising due to their potential use in thin film electronics and display drivers [1]. However, the stability of AOS-TFTs under the various stresses has been issued for the practical AOSs applications [2]. Up to now, many researchers have studied to understand the sub-gap density of states (DOS) as the root cause of instability [3]. Nomura et al. reported that these deep defects are located in the surface layer of the ${\alpha}$-IGZO channel [4]. Also, Kim et al. reported that the interfacial traps can be affected by different RF-power during RF magnetron sputtering process [5]. It is well known that these trap states can influence on the performances and stabilities of ${\alpha}$-IGZO TFTs. Nevertheless, it has not been reported how these defect states are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOI) can be generated by electron attachment in oxygen atom near target surface and accelerated up to few hundreds eV by self-bias of RF magnetron sputter; the high energy bombardment of NOIs generates bulk defects in oxide thin films [6-10] and can change the defect states of ${\alpha}$-IGZO thin film. In this paper, we have confirmed that the NOIs accelerated by the self-bias were one of the dominant causes of instability in ${\alpha}$-IGZO TFTs when the channel layer was deposited by conventional RF magnetron sputtering system. Finally, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process [9-10] to eliminate the NOI bombardment effects and present how much to be improved the instability of ${\alpha}$-IGZO TFTs by this new deposition method.

  • PDF

Optical and textural properties of AZO:H thin films by RF magneton sputtering system with various working pressures

  • Hwang, Seung-Taek;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.165-165
    • /
    • 2010
  • AZO:H films were prepared by RF magnetron sputtering system with a AZO (2wt% $Al_2O_3$) ceramic target at a temperature of $150^{\circ}C$. The annealing treatments were carried out in hydrogen ambient for 1hr at a temperature of $400^{\circ}C$. The AZO:H films were etched with 1 % HCl. The influence of the properties of AZO:H films deposited in various working pressures is investigated. As a result, the AZO:H film deposited in 4mTorr showed excellent electrical property of $\rho=5.036{\times}10^{-4}{\Omega}cm$ and strongly oriented (002) peak. The transmittance in the wavelength of 450nm was above 80%. It can be used as front electrode for increasing efficiency of GaN LED.

  • PDF

The preparation of $YBa_2Cu_3O_x$ superconducting thin film using rf - magnetron sputtering system (Rf - magnetron sputtering system을 사용한 $YBa_2Cu_3O_x$ 초전도 박막의 제조)

  • Park, S.J.;Kim, M.K.;Choi, S.H.;Choi, H.S.;Hwang, J.S.;Han, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.717-720
    • /
    • 1992
  • Since the discovery of High-Tc superconducting Y-Ba-Cu-O ceramics with critical temperature of about 90K, numerous efforts to prepare supercond ucting thin films with excellent qualities such as High-Tc and critical current density have been made. The samples were deposited onto $SiO_x$ substrates heated at 540$^{\circ}C$ - 600$^{\circ}C$ in a single target rf - magnetron sputtering system. The film thickness has 2000$\AA$ - 5000 $\AA$ with a rate of 16 $\AA$/min. and distance between target and substrate was 50 mm. The films were characterized by X - ray diffraction, scanning electron microscopy and critical temperature.

  • PDF