• 제목/요약/키워드: Magnetohydrodynamic

검색결과 123건 처리시간 0.026초

Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

  • Park, Hyeon K.
    • Journal of electromagnetic engineering and science
    • /
    • 제17권4호
    • /
    • pp.169-177
    • /
    • 2017
  • The role of electromagnetic (EM) waves in magnetic fusion plasma-ranging from radio frequency (RF) to microwaves-has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV=10000 K) that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs) provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

진공차단부에서 발생하는 확산형 아크 수치해석 (Numerical Study on a Diffused-mode Arc within a Vacuum Interrupter)

  • 조성훈;황정훈;이종철;최명준;권중록;김윤제
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.479-482
    • /
    • 2008
  • In order to more closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, the thermal-fluid characteristics of high current vacuum arcs were calculated by a commercial multiphysics package, ANSYS, in order to obtain Joule heat, Lorentz force and the interactions with flow variables. We assumed the diffused-mode arc within an AMF vacuum interrupter. It was found with four different currents that the temperature distributions on the anode surface are diffused uniformly without concentration in 7kA for both types (cup and coil-type). But the arc plasma transition and an increase of thermal flux density for increasing the applied current have caused the change of temperature distributions on the anode surface. We should need further studies on the two-way coupling method and radiation model for arc plasmas in order to accomplish the advanced analysis method for multiphysics.

  • PDF

전극형상 변화가 진공차단기내 축방향 자기장 특성에 미치는 영향 (Effects of Electrode Configurations on the Characteristics of Axial Magnetic Fields in Vacuum Interrupter)

  • 황정훈;이종철;김윤제
    • 대한기계학회논문집A
    • /
    • 제32권1호
    • /
    • pp.7-12
    • /
    • 2008
  • The vacuum interrupter (VI) is used for medium-voltage switching circuits due to its abilities and advantages as a compacted environmental friendly circuit breaker. In general, the application of a sufficiently strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. A full understanding of the vacuum arc physics is very important since it can aid to improve the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, we have investigated the effect of changing geometrical parameters for electromagnetic behaviors of high-current vacuum arcs with two different types of AMP contacts, which are coil-type and cup-type, using a commercial finite element analysis (FEA) package, ANSYS. The present results are compared with those of MAXWELL 3D, a reliable electromagnetic analysis software, for verification.

Turbulence Driven by Supernova Explosions in a Radiatively-Cooling Magnetized Interstellar Medium

  • KIM JONGSOO;BALSARA DINSHAW;MAC LOW MORDECAI-MARK
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.333-335
    • /
    • 2001
  • We study the properties of supernova (SN) driven interstellar turbulence with a numerical magnetohydrodynamic (MHD) model. Calculations were done using the RIEMANN framework for MHD, which is highly suited for astrophysical flows because it tracks shocks using a Riemann solver and ensures pressure positivity and a divergence-free magnetic field. We start our simulations with a uniform density threaded by a uniform magnetic field. A simplified radiative cooling curve and a constant heating rate are also included. In this radiatively-cooling magnetized medium, we explode SNe one at a time at randomly chosen positions with SN explosion rates equal to and 12 times higher than the Galactic value. The evolution of the system is basically determined by the input energy of SN explosions and the output energy of radiative cooling. We follow the simulations to the point where the total energy of the system, as well as thermal, kinetic, and magnetic energy individually, has reached a quasi-stationary value. From the numerical experiments, we find that: i) both thermal and dynamical processes are important in determining the phases of the interstellar medium, and ii) the power index n of the $B-p^n$ relation is consistent with observed values.

  • PDF

An Isothermal Mganetohydrodynamic Code and Its Application to the Parker Instability

  • KIM JONGSOO;RYU DONGSU;JONES T. W.;HONG S. S.
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.281-283
    • /
    • 2001
  • As a companion to an adiabatic version developed by Ryu and his coworkers, we have built an isothermal magnetohydrodynamic code for astrophysical flows. It is suited for the dynamical simulations of flows where cooling timescale is much shorter than dynamical timescale, as well as for turbulence and dynamo simulations in which detailed energetics are unimportant. Since a simple isothermal equation of state substitutes the energy conservation equation, the numerical schemes for isothermal flows are simpler (no contact discontinuity) than those for adiabatic flows and the resulting code is faster. Tests for shock tubes and Alfven wave decay have shown that our isothermal code has not only a good shock capturing ability, but also numerical dissipation smaller than its adiabatic analogue. As a real astrophysical application of the code, we have simulated the nonlinear three-dimensional evolution of the Parker instability. A factor of two enhancement in vertical column density has been achieved at most, and the main structures formed are sheet-like and aligned with the mean field direction. We conclude that the Parker instability alone is not a viable formation mechanism of the giant molecular clouds.

  • PDF

A Scaling of Velocity and Magnetic field in Decaying Turbulence in Expanding/Collapsing Media

  • 박준성;류동수;조정연
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.108.2-108.2
    • /
    • 2011
  • We investigate decaying magnetohydrodynamic (MHD) turbulence by including the effects of expansion and collapse of the background medium. The problem has two time scales, the eddy turn-over time($t_{eddy}$) and the expansion/collapse time scale(${\tau}_H$). The turbulence is expected to behave differently in two regimes of $t_{eddy}$ < ${\tau}_H$ and $t_{eddy}$ > ${\tau}_H$. For instance, for $t_{eddy}$ < ${\tau}_H$, the turbulence would decay more or less as in a static medium. On the other hand, for $t_{eddy}$ > ${\tau}_H$, the effects of expansion and collapse would be dominant. We examine the properties of turbulence in the regimes of $t_{eddy}$ < ${\tau}_H$ and $t_{eddy}$ > ${\tau}_H$. Based on it, we derive a scaling for the time evolution of flow velocity and magnetic field.

  • PDF

The effect of field-line twist on the dynamic and electric current structures of emerging magnetic field on the Sun

  • An, Jun-Mo;Lee, Hwan-Hee;Kang, Ji-Hye;Magara, Tetsuya
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.102.1-102.1
    • /
    • 2011
  • In this study we use three-dimensional magnetohydrodynamic simulations to investigate how the dynamic state of emerging magnetic field is related to the twist of field lines. Emerging magnetic field forms a magnetic structure on the Sun where various kinds of activity such as solar flares, jets, and coronal mass ejections are observed. To understand the physical mechanism for producing such activity, we have to know the dynamic nature of this structure. Since flares are the manifestation of rapidly dissipating electric current in the corona, we also investigate the distribution of current density inside the structure and examine how it depends on the field-line twist. To demonstrate the dynamic structure of emerging magnetic field, we focus on the factors characterizing the geometric property and stratification of emerging magnetic field, such as the curvature of field line and the scale height of field strength. These two factors show that emerging field forms a two-part structure in which the central part is close to a force-free state while the outer marginal part is in a fairly dynamic state where magnetic pressure force is dominant. We discuss how the field-line twist affects the two-part structure and also explain a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

Evolution of the Magnetosphere in Response to a Sudden Ring Current Injection

  • Choe, G.S.;Park, Geun-Seok;Lee, Jung-Gi
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.100.2-100.2
    • /
    • 2011
  • The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is studied by numerical magnetohydrodynamic (MHD) simulation. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium.

  • PDF

Large Hydromagnetic Axisymmetric Instability of a Streaming Gas Cylinder Surrounded by Bounded Fluid with Non Uniform Field

  • Radwan, Ahmed Elazab;Elogail, Mostafa Abdelrahman;Elazab, Nasser Elsaid
    • Kyungpook Mathematical Journal
    • /
    • 제47권4호
    • /
    • pp.455-471
    • /
    • 2007
  • The magnetohydrodynamic axisymmetric instability of a streaming gas jet surrounded by bounded fluid with non-uniform field has been developed. The problem is formulated, solved and the boundary conditions are applied across the interfaces. The eigenvalue relation is derived and discussed analytically and the results are confirmed numerically. Some reported works are recovered as limiting cases from the present general results. The streaming has a destabilizing effect for all short and long wavelengths. The capillary force is stabilizing for short wavelengths but it is destabilizing for long wavelengths. The axial magnetic fields interior the gas and fluid media are stabilizing. The transverse field is destabilizing for all wavelengths. The radii ratio of the gas and fluid cylinders plays an important role for stabilizing the model and made it more realistic one than the full liquid jet or/and the ordinary hollow jet. The numerical analysis clarify the stable and unstable domains based on different values of the various parameters of the problem.

  • PDF

축방향 자기장에 의한 대전류 아크 특성에 관한 연구 (A Study on the Characteristics of High-Current Arc Plasma Influenced by Axial Magnetic Field)

  • 조성훈;이종철;최명준;권중록;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2515-2518
    • /
    • 2008
  • The vacuum interrupter (VI) is widely used in medium-voltage switching circuits due to its abilities and advantages as an environmental friendly circuit breaker. An understanding of the vacuum arc flow phenomena is very important for improving the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and the thermal flow fields, simultaneously. In this study, we have investigated arc plasma constriction phenomena and an effect of AMF on the arc plasma with the high-current vacuum arcs for the cup-type AMF electrode by using a commercial finite element analysis (FEA) package, ANSYS. The simulation results applied with various AMFs and constant Joule heat generation show that strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. However, further studies are required on the two-way coupling method and radiation model for arc plasma in order to accomplish the advanced analysis method.

  • PDF