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Abstract. The magnetohydrodynamic axisymmetric instability of a streaming gas jet

surrounded by bounded fluid with non-uniform field has been developed. The problem

is formulated, solved and the boundary conditions are applied across the interfaces. The

eigenvalue relation is derived and discussed analytically and the results are confirmed nu-

merically. Some reported works are recovered as limiting cases from the present general

results. The streaming has a destabilizing effect for all short and long wavelengths. The

capillary force is stabilizing for short wavelengths but it is destabilizing for long wave-

lengths. The axial magnetic fields interior the gas and fluid media are stabilizing. The

transverse field is destabilizing for all wavelengths. The radii ratio of the gas and fluid

cylinders plays an important role for stabilizing the model and made it more realistic one

than the full liquid jet or/and the ordinary hollow jet. The numerical analysis clarify the

stable and unstable domains based on different values of the various parameters of the

problem.

1. Introduction

The classical studies of the capillary instability of a gas cylinder submerged
into a liquid are given by Chandrasekhar (1961), Drazin & Reid (1980) and Cheng
(1985). Kendall (1986) performed experiments with modern equipment to check the
breaking - up of that model. Moreover, he (1986) attracted the attention for the
importance of the stability discussions of that model and its applications in many
domains of science. Soon afterwards a lot of researchers treated with the stability
of such model (see Radwan (1989), (1998), (2002) and (2005)) analytically and nu-
merically upon utilizing appropriate basic equations and boundary conditions.
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One has to mention here that the most important mode is the axisymmetric one
where in all foregoing studies it is found that the model is unstable only in this
mode.
Concerning the hydrodynamic stability of a hollow jet endowed with surface tension
we may refer to (Chauhan et.al.(2000), Chen & Lin (2002), Cousin & Dumouchel
(1966), Lee & Wang (1986) and (1989), Mehring & Sirignano (2000), Parthasrathy
& Chiang (1998), Shen & Li (1996), Shi et.al. (1999), Shukudov & Sisoev (1996)
and Villermaux (1998)).

Here we extend the foregoing study upon discussing the stability of a gas jet
surrounded by a bounded fluid pervaded by non-uniform magnetic field, acted by
the combining effect of the pressure gradient, capillary and electromagnetic forces.
This will be done for axisymmetric perturbations mode.

The phenomenon of the present model may be occurred in nature as a gas jet
penetrated oil layers. Also in geological drilling when a gas escapes from below
liquid layers.

2. Formulation of the problem

We consider a gas cylinder of radius R0 streams through a bounded fluid of
radius qR0 (1 < q < ∞) with velocity u0 = (0, 0, U). The fluid is assumed to be
incompressible, non-viscous and perfectly conducting.
The gas region is penetrated by the variable magnetic field

(2.1) Hg
0 = (0,

βH0r

R0
, αH0),

while the fluid one by the uniform field H0 = (0, 0,H0) where H0 is the intensity of
the magnetic field in the fluid and α & β are parameters. The fluid matter is acted
by the pressure gradient, capillary, inertia and electromagnetic forces. The gas jet
is acted by the inertia and electromagnetic forces in addition to the force due to the
gas natural constant pressure P g

0 . However, the fluid inertia force is assumed to be
predominant over that of the gas. The components of H0 and Hg

0 are considered
along the utilizing cylindrical coordinates (r, ϕ, z).
The hydromagnetic fundamental equations appropriate for studying the stability of
the fluid model under consideration are the combination of the pure hydrodynamic
equations and those of Maxwell concerning the electromagnetic theory. These equa-
tions may be given as follows.
In the gas cylinder,

∇ ·Hg = 0,(2.2)
∇×Hg = 0. (there is no current)(2.3)

Along the gas-fluid interface,

(2.4) Ps = T (∇ ·N).
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In the liquid region,

ρ
[ ∂

∂t
+ (u · ∇)

]
u = −∇P + µ(J ×H),(2.5)

J = ∇×H,(2.6)
∇ ·H = 0,(2.7)
∇ · u = 0,(2.8)
∂H

∂t
= ∇× (u×H).(2.9)

Here Hg and H are the magnetic field intensities in the gas and fluid regions, Ps

the curvature pressure due to the capillary force, T the surface tension coefficient,
N the outward unit vector normal to the gas-fluid interface and indicates as r (the
radial cylindrical coordinate) does, µ the magnetic permeability coefficient and J
is the current density; while ρ, u and P are the fluid mass density, velocity vector
and kinetic pressure. Upon using some vector identities, equations (2.5) and (2.9)
may be written in the form:

∂u

∂t
+ (u · ∇)u− µ

ρ
(H · ∇)H = −∇Π,(2.10)

∂H

∂t
+ (u · ∇)H = (H · ∇)u,(2.11)

with

(2.12) ρΠ = P +
µ

2
(H ·H)

represents the total hydromagnetic pressure which is the sum of the fluid kinetic
pressure and magnetic pressure.
The basic equations (2.2)-(2.11) are solved, with u = (0, 0, U), appropriate boundary
conditions are applied at r = R0 and consequently the unperturbed fluid kinetic
pressure distribution P0 is given by

(2.13) P0 = − T

R0
+ P g

0 +
µH2

0

2
(α2 + β2 − 1).

Here P g
0 is the gas constant pressure in the initial state, (− T

R0
) the contribution of

the capillary force, while the third term in the right side of equation (2.13) is being
the net magnetic pressure due to the effect of the electromagnetic forces acting in
the gas and fluid regions.

One has to refer here that in absence of the magnetic field as:

(i) H0 = 0,

(ii) β = 0 and α = 1 or
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(iii) α = 0 and β = 1,

the constant gas pressure P g
0 must be greater than (− T

R0
) in order that P0 > 0,

otherwise the model collapses and there will not be a gas pervades into the fluid
region.
Keep in your mind that µ = 4π × 10−7 Henry/m. So its contribution will be in-
finitesimally small.

In the general case, in order to P0 ≥ 0 the gas kinetic pressure P g
0 in the initial

state must satisfy the restriction:

(2.14) P g
0 ≥

T

R0
+

µH2
0

2
(1− α2 − β2),

otherwise the model collapses and will be a homogeneous fluid medium.

3. Linearization and solutions

For small departure from the unperturbed state due to axisymmetric perturba-
tion, every variable quantity Q(r, z; t) could be expressed as:

(3.1) Q(r, z; t) = Q0(r) + ε0Q1(r, z; t) + · · · , |Q1| << Q0.

Here Q stands for u, P, Hg and H where Q0 denotes the unperturbed part and
Q1 is a small fluctuating part due to perturbation. From the view point of the
expansion (3.1) and upon considering axisymmetric sinusoidal wave, the perturbed
radial distance of the gas jet in the perturbed state could be expressed as

(3.2) r = R0 + ε0R1 + · · ·
with

(3.3) R1 = exp[i(kz) + σt].

Here R1 represents the elevation of the surface wave, σ is the growth rate, k (real
number) is the longitudinal wave number and ε0 (= ε at t = 0) is the initial
amplitude of the perturbation.

Based on the foregoing expansions, the MHD basic equations (2.2)-(2.12) in the
perturbed state are given by:

∇ ·Hg
1 = 0,(3.4)

∇×Hg
1 = 0,(3.5)

P1s =
T

R2
0

[
R1 + R2

0

∂2R1

∂z2

]
,(3.6)

∂u1

∂t
+ (u0 · ∇)u1 −

µ

ρ
(H0 · ∇)H1 = −∇Π1,(3.7)

ρΠ1 = P1 + µ(H0 ·H1),(3.8)
∇ ·H1 = 0,(3.9)
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∇ · u1 = 0,(3.10)
∂H1

∂t
+ (u0 · ∇)H1 = (H0 · ∇)u1.(3.11)

By the aid of the series expansion (3.1) and the space-time dependence (3.2), based
on the linear perturbation technique, the variables Q1(r, z; t) could be expressed as:

(3.12) Q1(r, z; t) = Q∗(r) exp[i(kz) + σt].

This means that every perturbed quantity could be expressed as an amplitude
function of r times the space-time dependence exp[i(kz) + σt]. Consequently, the
basic equations (3.4)-(3.11) in the perturbed state are analyzed and solved. Apart
from the infinite (singular) solution, we obtain:

Π1 =
(
AI0(kr) + BK0(kr)

)
R1,(3.13)

Hg
1 = C∇(

I0(kr)R1

)
,(3.14)

u1 =
−(σ + ikU)

ρ
(
(σ + ikU)2 + Ω2

A

) ∇Π1,(3.15)

H1 =
−H0

ρ
(
(σ + ikU)2 + Ω2

A

) ∇∂Π1

∂z
,(3.16)

Π1 =
P1

ρ
+

µ

ρ
(H0 ·H1),(3.17)

P1s =
T

R2
0

(1− x2)R1.(3.18)

The cylindrical functions I0(kr) and K0(kr) are the modified Bessel functions of

the first and second kind of order zero with ΩA =
√

µH2
0k2

ρ is the Alfven wave
frequency defined in terms of H0 while A,B and C are constants of integration to
be determined, where x(= kR0) is the dimensionless longitudinal wavenumber.

4. Eigenvalue relation

The solution of the basic equations (2.2)-(2.11) in the unperturbed state given
by equation (2.13) and in the perturbation one given by equations (3.13)-(3.18)
must satisfy appropriate boundary conditions at r = R0 and r = qR0. Under the
present circumstances these boundary conditions are given as follows.

(i) The normal component of the velocity vector u of the fluid must be compatible
with the velocity of the gas - fluid interface at r = R0, i.e.,

(4.1) u1r =
∂r

∂t
at r = R0.

(ii) The normal component of the velocity u must vanish across the wall sur-
rounded the fluid at r = qR0, i.e.,

(4.2) u1r = 0 at r = qR0.
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Upon applying these conditions and solving the resulting equations for A and
B, we finally obtain:

A = −B
K ′

0(y)
I ′0(y)

(4.3)

B =

(
(σ + ikU)2 + Ω2

A

)
[I ′0(y)]

k[I ′0(x)K ′
0(y)− I ′0(y)K ′

0(x)]
,(4.4)

where

x = kR0(4.5)
y = qx, 1 < q < ∞(4.6)

are the longitudinal dimensionless wave numbers.

(iii) The normal component of the magnetic field across the gas-fluid interface
must be continuous at r = R0.
This condition reads:

(4.7) N0 ·H1 + N1 ·H0 = N0 ·Hg
1 + N1 ·Hg

0,

where

(4.8) N0 = (1, 0, 0)

and

(4.9) N1 = (0, 0,−ik)R1.

The condition (4.7) yields:

(4.10) C =
iH0α

I ′0(x)
.

Now, we have to apply the balance of pressure. This condition states that the
normal component of the total stress tensor must be continuous across the gas-fluid
interface at r = R0.
This compatibility condition reads:

(4.11)
[
P1 + µ(H0 ·H1) + R1

∂P0

∂r

]− [
µ(H0 ·H1) +

µ

2
R1

∂

∂r
(H0 ·H0)

]g = P1s.

By substituting for P1, R1, P1s,H0,H
g
0,H1 and Hg

1 in equation (43), we get

(σ + ikU)2 = (σ + ikU)2T + (σ + ikU)2H0
,(4.12)

(σ + ikU)2T = − T

ρR3
0

(1− x2)F0(x, y),(4.13)

(σ + ikU)2H0
=

µH2
0

ρR2
0

{
− x2 +

[− β2 + α2 xI0(x)
I ′0(x)

]
F0(x, y)

}
,(4.14)
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where F0(x, y) is defined by:

(4.15) F0(x, y) = x
L0

x,y

L0
y

with

L0
x,y = I ′0(x)K ′

0(y)− I ′0(y)K ′
0(x),(4.16)

L0
y = I0(x)K ′

0(y)− I ′0(y)K0(x).(4.17)

5. Limiting cases

Equation (4.12) is the eigenvalue relation of the present model of a gas jet
pervaded into bounded fluid of radius qR0 (1 < q < ∞, R0 is the radius of the gas
jet) with variable magnetic field, see equation (2.1).

The relation (4.12) relates the growth rate σ or rather the oscillation frequency

ω as σ(= iω) is imaginary with the natural quantity
(

T
ρR3

0

)−1
2

as well as
(

µH2
0

ρR2
0

)−1
2

as a unit of time, the modified Bessel functions I0 & K0 and their derivatives of
different arguments, the longitudinal wave numbers x and y, the magnetic field
parameters α and β in the gas region and with the parameters ρ, µ,R0, T and H0

of the problem.
Since the present problem is general one, some published works could be ob-

tained from the present result as limiting cases under appropriate choices.
If we assume that α = 0, β = 0,H0 = 0, U = 0, and q →∞, then the relation (4.12)
yields:

(5.1) σ2 =
T

ρR3
0

(1− x2)
xK1(x)
K0(x)

, K1(x) = −K ′
0(x).

This relation is indicated by Chandrasekhar (1961) in comparing the stability anal-
ysis of a hollow jet with that of full liquid jet.

If we assume α = 0, β = 0, H0 = 0, and q → ∞, the dispersion relation (4.12)
reduces to:

(5.2) (σ + ikU)2 = − T

ρR3
0

(1− x2)
xK ′

0(x)
K0(x)

.

That coincides with the relation derived by Radwan (1989). One has to infer here
that the results due to the discussions of the relations (5.1) and (5.2) are for some
extent are in good agreement with the experimental results of Kendall (1986).

If we suppose that β = 0 and q →∞, we have

(5.3) (σ + ikU)2 = − T

ρR3
0

(1− x2)
xK ′

0(x)
K0(x)

+
µH2

0

ρ0R2
0

{
− x2 + α2x2 I0(x)K ′

0(x)
I ′0(x)K0(x)

}
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which is the MHD stability criterion of a hollow jet, endowed with surface tension
and pervaded by axial magnetic fields, derived before by Radwan (1988) as m = 0
there and U = 0 here. See also Radwan’s result (1998) (equation (6.9) there).

If we neglect here the effect of the capillary force on the stability of the present
model of a hollow jet (and put U = 0 here), the relation (4.12) degenerates to
Radwan’s results (2002) in discussing the magneto dynamic stability of a bounded
hollow cylinder pervaded by varying magnetic field.

If T = 0 and at the same time α = 0 and β = 0, we have

(5.4) σ2 = −µH2
0

ρR2
0

x2,

which indicates that the present model is always stable for all short and long wave-
lengths.

6. Stability discussions

The eigenvalue relation (4.12) is a linear combination of the relations of a gas jet
bounded by radially finite fluid subjected by electromagnetic forces only and that
one endowed with surface tension only. The relation (4.12) is a quadratic equation
in σ. The model is unstable or otherwise based on the sign of σ2:

(i) If σ2 is negative, this means that σ is imaginary say σ = iω (i =
√−1), then

the model will be ordinary stable.

(ii) If σ2 is positive, this means that σ is real, then the model is ordinary unstable.

(iii) If σ2 = 0, this means that there is no growth rate of the perturbation, then
the model is neutral (marginally) stable.

In order to discuss the stability of the present model analytically, we need
studying and writing down about the behavior and characters of the modified Bessel
functions and their derivatives.

Consider the recurrence relations (see Abramowitz and Stegun (1970))

2I ′m(x) = Im−1(x) + Im+1(x),(6.1)
2K ′

m(x) = −Km−1(x)−Km+1(x)(6.2)

and for each non-zero real value of x, that Im(x) is positive definite and monotonic
increasing while Km(x) is monotonic decreasing but never negative (m is the order
of the Bessel function here). So we have

(6.3) I ′0(x) > 0 and K ′
0(x) < 0

also since x < y, we have

K0(x) > K0(y),(6.4)
I0(x) < I0(y),(6.5)

−|K ′
0(x)| > −|K ′

0(y)|.(6.6)
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It follows, for y 6= 0 and x 6= 0, that:

I0(x)K ′
0(y)− I ′0(y)K0(x) < 0,(6.7)

I ′0(x)K ′
0(y)− I ′0(y)K ′

0(x) > 0,(6.8)

and consequently

(6.9) F0(x, y) = x
L0

x,y

L0
y

< 0.

Now, let us return to our task of discussing the stability of the present model. If
we neglect the effect of the magnetic field i.e., the permeability coefficient is zero or
rather there are no pervading magnetic field (H0 = 0), the relation (4.12) reduces
to the relation (4.13).

The discussions of the capillary eigenvalue relation (4.13) may be carried out
by the aid of the relations (6.1)-(6.9).
In view of the recurrence relations (6.1), (6.2) and the inequalities (6.3)-(6.9), the
sign of σ2 is depending on the sign of the quantity (1−x2). Therefore, we have the
following:

σ2

[
T/(ρR3

0)
] > 0 as 0 < x < 1,(6.10)

σ2

[
T/(ρR3

0)
] < 0 as 1 < x < ∞,(6.11)

σ2

[
T/(ρR3

0)
] = 0 as x = 1,(6.12)

as we consider

(6.13) U = 0,

we have the following three cases:

(i) The model is capillary unstable as 0 ≤ x < 1.

(ii) The model is marginally stable as x = 1.

(iii) It is ordinary stable as long as 1 < x < ∞.

These results are similar to those of the full liquid cylinder and to those of
ordinary hollow jet [a gas jet surrounded by unbounded liquid]. However, the max-
imum mode of instability of an ordinary hollow jet is much larger than that of a full
liquid cylinder in vacuum. While the maximum modes of instability of the present
bounded hollow jet corresponding to different values of q = 2, 5, 10, 100, · · · are
among the maximum modes of the foregoing cases: e.g. as 100 < q < ∞ the unsta-
ble curve is for some extent coincides with that of purely hollow jet. But whatever
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the smallest value of 1 < q ≤ 1.001, we see that the unstable curve is much lower
than that of purely hollow jet and never to be near to the unstable curve of the full
liquid jet.

The streaming has strong destabilizing effect for all long and short wavelengths.
Therefore, the streaming has the effect of increasing and longating the unstable
domain 0 ≤ x < 1 and simultaneously decreasing the stable domain 1 ≤ x < ∞ and
change the critical value xc = 1 to several values depends on the value of the speed
of the fluid.

As we neglect the capillary force effect and considering that the model is acting
upon the inertia, pressure gradient and electromagnetic forces; the magnetodynamic
dispersion relation is obtained from (4.12) as T = 0 in the form of equation (4.14)
together with equations (4.15)-(4.17).

The effect of the magnetic field in the fluid cylindrical region of radius qR0 is
represented by the term (−x2) followed by µH2

0
ρR2

0
. It has always stabilizing effects on

the present model of bounded hollow jet or even if this model is unbounded. This
effect is valid not only for short wavelengths but also for long wavelengths.

The effect of the magnetic fields in the gas region is represented by the terms
including α and β following µH2

0
ρR2

0
in equation (4.14).

The effect of the longitudinal magnetic field in the gas jet is represented by terms
including α:

(6.14)
µH2

0

ρR2
0

(
α2 xI0(x)

I ′0(x)
F0(x, y)

)
,

where F0(x, y) is still defined by equations (4.15)-(4.17).
In view of the inequalities (6.7)-(6.9), taking into account that I0(x) and its deriva-
tive are positive, we see that the longitudinal magnetic field penetrated in the gas
jet is stabilizing for all short and long wavelengths.
The effect of the transverse magnetic field in the gas jet is represented by the term
including β:

(6.15)
(µH2

0

ρR2
0

)(
− β2 F0(x, y)

)
,

that has a destabilizing effect for all wavelengths.
Therefore, we conclude that the transverse magnetic field has strong destabiliz-

ing effect while the axial field is stabilizing for all short and long wavelengths.
In addition to that the streaming has a strong destabilizing effect. So we are

unable to decide whether the model is stable or not. Consequently, we have to make
numerical discussions.

In comparing these results with those of ordinary hollow jet as q → ∞, we see
that the geometric factor q (which is the ratio of the fluid radius to the gas radius)
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has a stabilizing influence on the MHD hollow jet. This refers to that the present
model is more realistic and can be realized than the open hollow jet, i.e., a gas jet
surrounded by an infinite fluid, and so its stability states are more clear than in the
other open model.

7. Numerical discussions

The main aim of the numerical analysis that we may identify exactly where are
the stable and unstable domains of the model at hand. Also we find out the effect
of the acting forces on the model.

In order to perform numerical discussions we have to write down the stability
criterion (4.12) in dimensionless form in the most important mode m = 0 of per-
turbation as U = 0. Now since the natural quantity

√
T

ρR3
0

has unit of (time)−1 we

have σ∗ =
[

σ√
T

ρR3
0

]
is the dimensionless temporal amplification and Hs =

√
T

µR0

has a unit of magnetic field. Consequently, equation (4.12) becomes

(7.1) σ∗2 = (1− x2)F0(x, y) +
(H0

Hs

)2[
− x2 +

(
α2x

I0(x)
I1(x)

− β2
)
F0(x, y)

]
.

The dispersion relation (7.1) has been computed in the computer for all short
and long wavelengths 0 ≤ x ≤ 5.
The values of σ∗ corresponding to the unstable domains and those of ω∗ = ω√

T

ρR3
0

corresponding to the stable domains are collected, tabulated and represented graphi-
cally. Such calculations have been elaborated for different values of (α, β) for various
values of q and

(
H0
H1

)
for regular values of 0 ≤ x ≤ 5.

The numerical data are plotted graphically in figures 1-4 and tabulated in tables
from which we deduce the following.

1. Corresponding to (α, β) = (0, 2), (0, 3) and (1, 3) for q = 1.3 and
(

H0
H1

)
=

1, it is found that the unstable domains are 0 < x < 1.383, 0 <
x < 2.546 and 0 < x < 1.97. While the stable domains for (α, β) =
(0, 1), (0, 2), (0, 3), (1, 0), (3, 0) and (1, 3) are 0 < x < ∞, 1.383 ≤ x < ∞,
2.546 ≤ x < ∞, 0 < x < ∞, 0 < x < ∞ and 1.97 ≤ x < ∞. Where the
equalities are associated with the marginal stability states. See figure 1.

2. Corresponding to (α, β) = (0, 1), (0, 2), (0, 3), (1, 0), (3, 0) and (1, 3) for q =
1.5 and

(
H0
H1

)
= 0, it is found only one unstable domain which is 0 < x < 1

the capillary unstable domain since there is no magnetic field influence. The
stable domain is 1 ≤ x < ∞, where xc = 1 the transition from stable domain
to the unstable one. See figure 2.

3. Corresponding to (α, β) = (0, 1), (0, 2), (0, 3) and (1, 3) for q = 3 and
(

H0
H1

)
=
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1.8, it is found that the unstable domains are 0 < x < 1.181, 0 < x < 2.606,
0 < x < 4.225 and 0 < x < 3.062. While the stable domains for (α, β) =
(0, 1), (0, 2), (0, 3), (1, 0), (3, 0) and (1, 3) are 1.181 ≤ x < ∞, 2.606 ≤ x < ∞,
4.255 ≤ x < ∞, 0 < x < ∞, 0 < x < ∞ and 3.062 ≤ x < ∞. Where the
equalities are associated with the marginal stable states. See figure 3.

4. Corresponding to (α, β) = (0, 1), (0, 2), (0, 3) and (1, 3) for q = 5 and
(

H0
H1

)
=

2, it is found that the unstable domains are 0 < x < 1.207, 0 < x < 2.753,
0 < x < 4.537 and 0 < x < 3.204. While the stable domain corresponding to
(α, β) = (0, 1), (0, 2), (0, 3), (1, 0), (3, 0) and (1, 3) are 1.207 ≤ x < ∞, 2.753 ≤
x < ∞, 4.5377 ≤ x < ∞, 0 < x < ∞, 0 < x < ∞ and 3.204 ≤ x < ∞. See
figure 4.
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Figure 1: MHD stability of a gas jet in bounded fluid penetrated by non-
uniform field for q = 1.3 and

(
H0
H1

)
= 1

(α, β) (0, 1) (0, 2) (0, 3) (1, 0) (3, 0) (1, 3)

line 1 2 3 4 5 6

Table 1: See the Figure 1.
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Figure 2: MHD stability of a gas jet in bounded fluid penetrated by non-
uniform field for q = 1.5 and

(
H0
H1

)
= 0

(α, β) (0, 1) (0, 2) (0, 3) (1, 0) (3, 0) (1, 3)

line 1 2 3 4 5 6

Table 2: See the Figure 2.
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Figure 3: MHD stability of a gas jet in bounded fluid penetrated by non-
uniform field for q = 3 and

(
H0
H1

)
= 1.8

(α, β) (0, 1) (0, 2) (0, 3) (1, 0) (3, 0) (1, 3)

line 1 2 3 4 5 6

Table 3: See the Figure 3.
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Figure 4: MHD stability of a gas jet in bounded fluid penetrated by non-
uniform field for q = 5 and

(
H0
H1

)
= 2

(α, β) (0, 1) (0, 2) (0, 3) (1, 0) (3, 0) (1, 3)

line 1 2 3 4 5 6

Table 4: See the Figure 4.


