• 제목/요약/키워드: Magneto-rheological Damper

검색결과 136건 처리시간 0.033초

바이패스형 MR 충격 댐퍼의 설계 및 성능 해석 (Design and Performance Investigation of Bypass-Type MR Shock Dampers)

  • 남윤주;김동욱;이육형;박명관
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.550-559
    • /
    • 2006
  • This paper presents designs and performance investigations of two bypass-type MR (magneto-rheological) shock dampers for high impulsive force systems, one of which is with single rod and the other with double rod. First of all, on the basis of the Bingham properties of the MR fluid and the magnetic field analysis of the magnetic circuit, the MR shock dampers are designed and manufactured. After experimental investigations on their magnetic field-dependent damping forces and responses characteristics, dynamic models of the proposed dampers are formulated and compared. Then, a simple 1 degree-of-freedom mass-drop system is constructed, and the effective and practical control algorithm is designed by considering dynamic characteristics of the shock control system. The shock control performances of the proposed MR shock dampers are verified through the comparison study of experiment results with simulation ones.

소형 MR감쇠기의 성능 실험에 기초한 준능동 제어 시스템 (Semi-Active Control System Based on the Experimental Results of the Performance of a Small Scale MR Damper)

  • 민경원
    • 한국전산구조공학회논문집
    • /
    • 제19권3호
    • /
    • pp.233-238
    • /
    • 2006
  • 이 논문에서는 소형 다층 구조물의 진동제어에 적용하기 위한 복합모드의 자기유변유체(MR) 감쇠기를 개발하였다. 우선, 도식적으로 전단, 유동, 복합모드 MR감쇠기의 형태를 설계조건과 함께 표현하였고, 각각의 모드에 대하여 자기장에 따른 감쇠력을 예측하기 위한 해석모델을 유도하였다. 다음으로 적당한 크기의 복합모드 MR감쇠기를 제작하고 자기장에 따른 감쇠특성을 시간영역에서 평가하였다. 마지막으로 지진하중을 받는 소형구조물에 제작된 MR감쇠기가 준능동 제어기로 제어하였을 때의 성능을 수치적으로 평가하였다.

영구자석을 이용한 밸브모드 MR 감쇠기 설계에 관한 연구 (A Study on the Design of Valve Mode MR Damper using Permanent Magnet)

  • 김정훈;오준호
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.69-76
    • /
    • 2000
  • Lots of semi-active control devices have been developed in recent years because they have the best features of passive and active system. Especially, controllable magneto-rheological(MR) fluid devices have received significant attention in these area of research. The MR fluid is the material that reversibly changes from a free-flowing, linear viscous fluid to a semisolid with a controllable yield strength in milliseconds when exposed to a magnetic field. If the magnetic field is induced by moving a permanent magnet instead of applying current to a solenoid, it is possible to design a MR damper consuming low power because the power consumption is reduced at steady state. This paper proposes valve mode MR damper using permanent magnetic circuit that has wide range of operation with low power consumption, a design parameter is adopted. The magnetic circuit, material of choke and choke type are selected experimentally with the design parameter. The behaviors of the damper are examined and torque tracking control using PID feedback controller is performed for step, ramp and sinusoidal trajectiories.

  • PDF

철도차량 승차감 향상을 위한 반능동/능동 진동제어 (Semi-active and Active Vibration Control to Improve Ride Comfort in Railway Vehicle)

  • 유원희;신유정;허현무;박준혁
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.248-253
    • /
    • 2013
  • The maximum speed is one of the most important performance in high speed railway vehicle. The higher the train speed is, the worse the ride comfort is, In order to solve this problem, a semi-active or active suspension can be applied to high speed railway vehicle. The variable damper with hydraulic solenoid valve is used in the semi-active suspension. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. The MR(Magneto Rheological) damper can be considered instead of hydraulic variable damper which needs additional device, i.e. reserver tank for fluid. In the case of active suspension, hydraulic actuator or electro-mechanical one is used to suppress the carbody vibration in railway vehicle. In this study the MR damper and electro-mechanical actuator was considered in secondary suspension system of high speed railway vehicle. The dynamic analysis was performed by using 10-DOF dynamic equations of railway vehicle. The performance of the semi-active suspension and active suspension system were reviewed by using MATLAB/Simulink S/W. The vibration suppression effect of semi-active and active suspension system were investigated experimentally by using 1/5-scaled railway vehicle model.

  • PDF

Control of wind-induced motion in high-rise buildings with hybrid TM/MR dampers

  • Aly, Aly Mousaad
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.565-595
    • /
    • 2015
  • In recent years, high-rise buildings received a renewed interest as a means by which technical and economic advantages can be achieved, especially in areas of high population density. Taller and taller buildings are being built worldwide. These types of buildings present an asset and typically are built not to fail under wind loadings. The increase in a building's height results in increased flexibility, which can lead to significant vibrations, especially at top floors. Such oscillations can magnify the overall loads and can be annoying to the top floors' occupants. This paper shows that increased stiffness in high-rise buildings may not be a feasible solution and may not be used for the design for comfort and serviceability. High-rise buildings are unique, and a vibration control system for a certain building may not be suitable for another. Even for the same building, its behavior in the two lateral directions can be different. For this reason, the current study addresses the application of hybrid tuned mass and magneto-rheological (TM/MR) dampers that can work for such types of buildings. The proposed control scheme shows its effectiveness in reducing floors' accelerations for both comfort and serviceability concerns. Also, a dissipative analysis carried out shows that the MR dampers are working within the possible range of optimum performance. In addition, the design loads are dramatically reduced, creating more resilient and sustainable buildings. The purpose of this paper is to stimulate, shape, and communicate ideas for emerging control technologies that are essential for solving wind related problems in high-rise buildings, with the objective to build the more resilient and sustainable infrastructure and to optimally retrofit existing structures.

Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution

  • Bozorgvar, Masoud;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.1-14
    • /
    • 2019
  • Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.

Implementation of Uniform Deformation Theory in semi-active control of structures using fuzzy controller

  • Mohammadi, Reza Karami;Haghighipour, Fariba
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.351-360
    • /
    • 2017
  • Protection of structures against natural hazards such as earthquakes has always been a major concern. Semi-active control combines the reliability of passive control and versatility and adaptability of active control. So it has recently become a preferred control method. This paper proposes an algorithm based on Uniform Deformation Theory to mitigate vulnerable buildings using magneto-rheological (MR) damper. Due to the successful performance of fuzzy logic in control of systems and its simplicity and intrinsically robustness, it is used here to regulate MR dampers. The particle swarm optimization (PSO) algorithm is also used as an adaptive method to develop a fuzzy control algorithm that is able to create uniform inter-story drifts. Results show that the proposed algorithm exhibited a desirable performance in reducing both linear and nonlinear seismic responses of structures. Performance of the presented method is indicated in compare with passive-on and passive-off control algorithms.

ECU-in-the Loop Simulation을 사용한 운전석 현가제어기의 성능평가 (Performance Evaluation of a Suspension Seat Controller Using ECU-in-the-Loop Simulation)

  • 백운경;이지웅;이종석
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1170-1178
    • /
    • 2007
  • Repeated hardware tests and tuning, investing cost and time, are usually required to assure a satisfactory performance of the suspension seat. In this study, an EILS(ECU-in-the-loop) method was proposed to develop a controller for a semi-active suspension seat with a MR(magneto-rheological) damper. EILS system was developed using a real-time seat dynamics model communicating with ECU hardwares under a closed loop environment utilizing Matlab/Simulink and xPC $TargetBox^{TM}$. A sky-hook based control algorithm with optimized damping coefficients was verified to reduce the energy consumption and to improve the vibration response performance.

타이어 압력 변화에 따른 1/4 MR 댐퍼 차량의 승차감 고찰 (Ride Comfort Investigation of 1/4 MR Damper Vehicle under Different Tire Pressure)

  • 맹영준;성민상;최승복;권오영
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1159-1165
    • /
    • 2011
  • This paper presents ride comfort characteristics of a quarter-vehicle magneto-rheological(MR) suspension system with respect to different tire pressure. As a first step, controllable MR damper is designed and modeled based on both the optimized damping force levels and mechanical dimensions required for a commercial full-size passenger vehicle. Then, a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of the quarter-vehicle MR suspension system. Finally, the ride comfort analysis with respect to different tire pressure is undertaken in time domain. In addition, a comparative result between controlled and uncontrolled is provided by presenting vertical RMS displacement.

MR 댐퍼 반능동 현가시스템의 승차감향상을 위한 수정된 민감도제어 (Modified Sensitivity Control of a Semi-Active Suspension System with MR-Damper for Ride Comfort Improvement)

  • 김태식;김내관;박재우;허창도;홍금식
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.129-138
    • /
    • 2007
  • In this paper, a modified sensitivity control for the semi-active suspension system with a magneto-rheological (MR) damper is investigated. A 2-d.o.f quarter-car model together with a 6th order polynomial model for the MR damper is considered. For the purpose of suppressing the vertical acceleration of the sprung mass, the square of the vertical acceleration is defined as a cost function and a modified sensitivity control that updates the current input in the negative gradient of the cost function is proposed. The implementation of the proposed algorithm requires only the measurement of the relative displacement of the suspension deflection. The local stability of equilibria of the closed loop nonlinear system is proved by investigating the eigenvalues of the linearized ones. Through simulations, the passive suspension, the skyhook control, and the proposed modified sensitivity control are compared.