• Title/Summary/Keyword: Magneto-Rheological Effect

Search Result 40, Processing Time 0.021 seconds

Effect of compression on the response of a magneto-rheological suspension

  • See, Howard;Mackenzie, Steven;Chua, Boon Teck
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.121-126
    • /
    • 2006
  • A carbonyl iron-based magneto-rheological suspension was compressed in the direction of the applied magnetic field and the change in rheological properties was measured. It was found that the compression did not have a large effect on the magneto-rheological response, which is in contrast to recent reports in the literature describing an almost order of magnitude increase in the shear yield stress. The difference can be attributed to the latter test's use of a sliding wedge apparatus which imparts considerable shearing to the sample during the compression.

Effect of Precured EPDM on the Property of Magneto-rheological Elastomer Based on NR/EPDM Blend

  • Na, Bokgyun;Chung, Kyungho
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.67-74
    • /
    • 2018
  • Magneto-rheological elastomers (MREs) are smart materials in which the inherent stiffness and damping properties can be changed by the influence of an external magnetic field. The magneto-rheological (MR) effect depends on the orientation characteristics of the dispersed magneto-responsible particles (MRPs) in the matrix. In this study, natural rubber (NR) and ethylene propylene diene rubber (EPDM) were blended and used as a matrix of an MRE. EPDM was pre-cured before blending with NR. The Mooney viscosity, curing characteristics, and mechanical properties were analyzed with various pre-curing conditions of EPDM and the NR/EPDM blend. The results show that excellent mechanical properties of the NR/EPDM blend-based MRE were obtained when the pre-curing time of EPDM was 60 min. The aging property of the NR-based MRE was improved by the introduction of pre-cured EPDM. Also, the anisotropic MRE showed a higher MR effect than that of the isotropic MRE.

The Evaluation of Shock Absorption Performance of Magneto-Rheological Elastomer Through the Drop Impact Test (낙하 충격 실험을 통한 자기유변탄성체의 충격 흡수 성능 평가)

  • Joeng, Kyeong Sik;Lee, Chul Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.92-93
    • /
    • 2013
  • In this study, Shock Absorption performance of Magneto-rheological elastomer(MRE) is identified through the drop impact test. Magneto-rheological materials are divided into two groups by MR fluid in fluid state and MR elastomer in solid state like rubber. The stiffness characteristics of Magneto-rheological material can be changed as magnetic field is applied. The impact loads in MR elastomer were measured under weight of impactor. Experiment results are shown through the experiments to confirm the effect of shock absorption of MR elastomer. Thus, the MR elastomer can be applied to shock absorber used in area that shock occurs.

  • PDF

Basic Study for Development of Magneto-rheological Elastomer (자기장 응답형 엘라스토머 개발을 위한 기초연구)

  • Chung, Kyung-Ho;Yoon, Kyu-Seo
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.106-111
    • /
    • 2010
  • Magneto-rheological elastomers (MREs) were manufactured by incorporation of magnetic responsible powder (MRP) into natural rubber and silicone rubber. The optimum loading amounts of MRP was 30 vol.% and the natural rubber based MRE (NR-MRE) showed better mechanical property than that of silicone rubber based MRE (S-MRE). However, the modulus shift ratio caused by S-MRE, measured by Self-modified Electromagnet Applied Fast Fourier Transform Analyser (SEFFTA), was higher than that of NR-MRE. The modulus shift ratio caused by NR-MRE was 10%, while the modulus shift ratio caused by S-MRE was 35.7%. The modulus shift ratio could be improved by orienting the magnetic direction of MRP before crosslinking the MRE. The degree of orientation of MRP was analyzed using SEM.

Identification of Negative Stiffness Effects in Magneto-Rheological Fluid based Squeeze Film Damper (자기유변유체를 이용한 스퀴즈 필름 댐퍼에서의 부강성 효과 규명)

  • 김근주;김정훈;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.739-744
    • /
    • 2001
  • In order to investigate the stability of magneto-rheological fluid based squeeze film damper (MR-SFD), its negative stiffness effect, which arises from magnetization of MR-SFD, is identified theoretically and experimentally. The analytical model of MR-SFD includes the magnetic circuit as well as the displacement stiffness associated with the squeeze mode of MRF. Extensive experiments are carried out to measure the magnetic attraction forces generated in the MR-SFD, with the excitation frequency and the eccentricity of the journal varied, which are controlled by an active magnetic bearing. The simulation and experimental results are found to be in good agreement. It is concluded that the negative stiffness effect dominates only in the low frequency region because its effect diminishes in the high frequency region due to the eddy-current loss.

  • PDF

Performance Analysis of a Magneto-Rheological Fluid Engine Mount (MR유체 엔진마운트의 성능해석)

  • 안영공;김원철;양보석
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.457-466
    • /
    • 1998
  • This paper evaluates the performance of a Magneto-Rheological (MR) fluid mount. The mount incorporates MR fluid in a conventional fluid mount to open and closed the inertia track between the fluid chambers of the mount. It is shown that such switching of the inertia track improves the mount's isolation effect, by eliminating the large transmissibility peak that commonly exists at frequencies higher than the notch frequency for conventional fluid mounts. The switching frequencies of the MR mount is evaluated, based on the parameters of the mount. A simple control scheme for switching the mount between the open and closed states is proposed, and the performance of the controlled mount is compared with conventional mounts. A sensitivity analysis is conducted to evaluate the effect of parameter errors in estimating the switching frequencies and mount performance. The results show that the switching frequencies can be accurately determined from mount parameters that are easily measured or estimated.

  • PDF

Effect of Magnetic Force on Rheological and Compressive Properties of Magneto-Rheological Rubber Composites with Iron Particle and Carbon Nanotubes (자기력이 철 분말 및 탄소나노튜브 강화 자기유동 고무 복합재료의 유동 및 압축 특성에 미치는 영향)

  • Ryu, Sang Ryeoul;Lee, Dong Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.153-160
    • /
    • 2013
  • An orthotropic magneto-rheological rubber composite (MRRC) based on a general-purpose rubber can be manufactured by using an electromagnetic device during the curing processes of rubber mixtures. The magnetic transmissivity of MRRCs increases with the iron particle (IP) content, and that of aligned MRRCs with a 2-T magnetic field is 1.8 to 2 times higher as compared to that of randomly dispersed MRRCs. The effect of a 2-T magnetic field on carbon nanotube (CNT) reinforced MRRC has been identified clearly, and the magnetic transmissivity is found to be 3.7%. The compressive stress of MRRC (IP 90 + CNT 5, 2 T alignment) under a magnetic field of 0.49 T is 2.1 times higher as compared to that of the matrix. The MR effect of MRRC increases with the IP content, and that of aligned MRRC with the IP 90 and 2 T magnetic field is 20.4%. It is confirmed that the magnetic field when making the specimen and when performing the compression test greatly impacts the compression characteristics.

The Effect of Orientation of Magneto-responsible Particles on the Transmissibility of Magneto-rheological Elastomer (자기장 응답 입자의 배향이 자기유변 탄성체의 전달성에 미치는 영향)

  • Lee, Joo-Hwan;Chung, Kyung-Ho;Yoon, Ji-Hyun;Oh, Jae-Eung;Kim, Min-Soo;Yang, Kyung-Mo;Lee, Seong-Hoon
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • The neodymium magnet inserted mold was proposed to orient magneto-responsible particles efficiently. The anisotropic magneto-rheological elastomer(MRE) was prepared using the new mold and the optimum amounts of the particles was 30 vol.%. As the orientation of particles was increased, the tensile strength of MRE was decreased, while the hardness of MRE was increased. It was found that the MRE containing 30 vol.% of magneto-responsible particles showed the maximum magneto-rheological effect. The ratio of shear modulus shift was 59% at the input current of 3 A. The transmissibility of MRE was decreased with increasing the input current and loading amounts of magneto-responsible particles. Therefore, the damping property of MRE could be improved by preparing the anisotropic MRE.

Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium

  • Amir, Saeed;Arshid, Ehsan;Maraghi, Zahra Khoddami
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.581-592
    • /
    • 2020
  • Magneto-rheological fluids and magneto-strictive materials are of the well-known smart materials which are used to control and reduce the vibrations of the structures. Vibration analysis of a smart annular three-layered plate is provided in this work. MR fluids are used as the core's material type and the face sheets are made from MS materials and is assumed they are fully bonded to each other. The structure is rested on visco-Pasternak foundation and also is subjected to a transverse magnetic field. The governing motion equations are derived based on CPT and employing Hamilton's principle and are solved via GDQ as a numerical method for various boundary conditions. Effect of different parameters on the results are considered and discussed in detail. One of the salient features of this work is the consideration of MR fluids as the core, MS materials as the faces, and all of them under magnetic field. The outcomes of this study may be led to design and create smart structures such as sensors, actuators and also dampers.

Control Performance for Semi-active Mount Featuring Magneto-Rheological Fluid (반능동형 MR유체 마운트의 성능제어)

  • Kim, O.S.;Park, W.C.;Lee, H.C.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.53-58
    • /
    • 2004
  • In this paper, the semi active mount featuring Magneto rheological fluid(MR Fluid) is proposed. MR fluid is suspension of micro sized magnetizable particles in a fluid medium, and its apparent viscosity can be varied by the applied strength of magnetic field. When the controllable MR fluid is applied to mechanical devices, the devices provide simple, rapid response interfaces between electronic controls and mechanical systems. The MR fluid is applied in the conventional fluid mount for improving its performance of the mount's isolation effect. A appropriate size of the MR mount is designed and manufactured on the basis of Bingham model of MR fluid. In addition, the field dependent damping forces of MR mount are evaluated with respect to the input frequency variation.

  • PDF