• 제목/요약/키워드: Magnetization current

검색결과 249건 처리시간 0.022초

잔류자속에 무관한 보상 알고리즘을 적용한 모선보호용 전류차동 계전방식 (A Percentage Current Differential Relay for Bus Protection Using a Compensation Algorithm Unaffected by a Remanent Flux)

  • 강용철;윤재성;임의재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.308-310
    • /
    • 2003
  • This paper proposes a percentage current differential relaying algorithm for bus protection with a compensation algorithm of a CT. The compensating algorithm estimates the core flux at the start of the first saturation based on the value of the third-difference of the secondary current. It calculates the core flux and compensates distorted currents in accordance with the magnetization curve. The test results indicate that the algorithm can discriminate internal faults from external faults when the CT saturates. It can improve not only stability of the relay in the case of an external fault but sensitivity of the relay in the case of an internal fault.

  • PDF

External Magnetic Field of Journal Bearing with Twined Solenoid

  • Zhang, Yanjuan;Wang, Jianmei;Li, Decai
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.291-298
    • /
    • 2017
  • In this paper, the distribution of internal magnetic induction intensity of oil-film bearing twined solenoids was proposed. The magnetic field was generated by solenoids and magnetized bearing. The magnetized bearing was simplified as solenoid model. The mathematical model of magnetic induction intensity at any point of finite solenoid was deduced. Through experiment method, the distribution of the internal magnetic induction intensity of oil-film bearing and the magnetizing current formula of bearing was obtained. Further, the magnetic induction intensity distribution of magnetization bearing was solved successfully. The results showed that the magnetic induction was a second-degree parabola with open upwards along the axial plane and the distribution of magnetic induction intensity was opposite to the rule of magnetic induction intensity generated by solenoids. In addition, the magnetic flux density increased linearly with the increase of current.

세그먼트 극을 가진 BLDC 전동기의 가진력에 관한 연구 (Effects of Segmented Poles on Exciting Forces for BLDC Motors)

  • 김경태;황상문
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권10호
    • /
    • pp.530-536
    • /
    • 1999
  • This paper investigates effects of segmented poles on exciting forces such as cogging torque, BEMF, phase current, torque ripple and local forces. Cogging torque, BEMF and local force are determined by FEM analysis and phase current is calculated using voltage equations after determining BEMF and phase inductance. Effective dead zones at pole separations result in wider than the physical dead zones due to leakage field during magnetization. Due to the existence of dead zones, there exist additional exciting harmonics of the cogging torque which play adverse effect on vibration and noise performance. The magnitude of BEMF is decreased and the waveforms are also distorted depending on dead zone positions. Segmented poles inevitably cause uneven magnetic field distribution at pole separations which introduces additional harmonics of exciting forces which are detrimental to structural to structural resonances. They also decrease motor efficiency by reducing effective phase BEMF.

  • PDF

Design of a CT Saturation Detection Technique with the Countermeasure for a Spike Signal

  • Kang, Yong-Cheol;Yun, Jae-Sung
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권2호
    • /
    • pp.85-92
    • /
    • 2003
  • When a current transformer (CT) is saturated, the wave-shape of the secondary current is distorted and contains points of inflection, which correspond to the start or end of each saturation period. Discontinuity in the first-difference function of the current arises at points of inflection, where the second and third differences convert into pulses that can be used to detect saturation. This paper describes the design and evaluation of a CT saturation detection technique using the third-difference function and includes the countermeasure for a spike signal. Test results clearly demonstrate that the algorithm successfully detects the start and end of each saturation period irrespective of the remanent flux and magnetization inductance in the saturated region. This paper concludes by describing the results of hardware implementation of the algorithm using a DSP.

Current Carrying Iron Whiskers: A New Magnetic Configuration

  • Lee, J.G.;Arrott, A.S.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.372-375
    • /
    • 1995
  • The magnetization pattern of the central cross section deduced from the ac susceptibility measurement is described with an analytical function. The function is based on a charge-free configuration. The thickness of the $^{\circ}$ wall lying in a (100) plane and the wall energy are calculated analytically. Total energy of the domain structure has been minimized with Ritz's method. As the result of the minimization, the energy density of the $^{\circ}$ wall lying in a (100) plane is $0.58\;erg/cm^{2}$ and the one for a (110) plane is $1.18\;erg/cm^{2}$. Thicknesses of these walls are calculated numerically. Also, the calculation indicates there is a small central domain at the cross section without applied current. With the ac susceptibility measurement the existence of the domain without current can be identified.

  • PDF

Analysis and Case Study of Permanent Magnet Arrays for Eddy Current Brake Systems with a New Performance Index

  • Sainjargal, Surenkhorloo;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.276-282
    • /
    • 2013
  • In this paper, magnetic flux distributions of several permanent magnet arrays, including Halbach array, are analyzed and compared. Also, braking force characteristics on a moving solid conductor in the eddy current brake systems with such magnet arrays are analyzed. Then, a new performance index taking into account the maximum braking force and the volume of the magnet is introduced for the comparison and case study of permanent magnet arrays. By changing the lengths, magnetization directions and the height of the permanent magnet arrays, a higher braking force per volume of the magnet can be achieved.

리셋 권선을 사용하지 않는 새로운 형태의 영전류 천이형 포워드 컨버터 (A New Zero-Current-Transition Forward Converter without Reset Turn)

  • 백은성;최현칠
    • 전력전자학회논문지
    • /
    • 제27권6호
    • /
    • pp.464-470
    • /
    • 2022
  • A new type of soft-switching forward converter is proposed in this study. By adding only a few components, the inductor, diode, switch, and capacitor exhibit higher efficiency than the conventional forward converter. Therefore, the switching losses of the proposed forward converter are considerably reduced compared with those of the conventional forward converter. In addition, the reset winding is not used because of the capacitor employed in the auxiliary circuit. The auxiliary capacitor is adopted for zero-current-transition operation and for dissipating magnetization energy. The performance of the proposed forward converter is validated using experimental results from a 60 W, single-output, forward converter prototype, and design guidelines are presented.

차폐층을 갖는 다층고온초전도 전력케이블의 전류분류 분석 (Analysis on Current Distribution in Multi-layer HTSC Power Cable with Shield Layer)

  • 이종화;임성훈;임성우;두호익;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제19권3호
    • /
    • pp.273-279
    • /
    • 2006
  • High-$T_c$ superconducting (HTSC) power cable is one of the interesting parts in power application using HTSC wire. However, its stacked structure makes the current distribution between conducting layers non-uniform due to difference between self inductances of conducting layers and mutual inductances between two conducting layers, which results in lower current transmission capacity of HTSC power cable. In this paper, the transport current distribution between conducting layers was investigated through the numerical analysis for the equivalent circuit of HTSC power cable with a shield layer, and compared with the case of without a shield layer. The transport current distribution due to the increase of the contact resistance in each layer was improved. However, its magnetization loss increased as the contact resistance increased. It was confirmed from the analysis that the shield layer was contributed to the improvement of the current distribution between conducting layers if the winding direction and the pitch length were properly chosen.

Temperature dependence of the effective anisotropy in Ni nanowire arrays

  • Meneses, Fernando;Urreta, Silvia E.;Escrig, Juan;Bercoff, Paula G.
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1240-1247
    • /
    • 2018
  • Magnetic hysteresis in Ni nanowire arrays grown by electrodeposition inside the pores of anodic alumina templates is studied as a function of temperature in the range between 5 K and 300 K. Nanowires with different diameters, aspect ratios, inter-wire distance in the array and surface condition (smooth and rough) are synthesized. These microstructure parameters are linked to the different free magnetic energy contributions determining coercivity and the controlling magnetization reversal mechanisms. Coercivity increases with temperature in arrays of nanowires with rough surfaces and small diameters -33 nm and 65 nm- when measured without removing the alumina template and/or the Al substrate. For thicker wires -200 nm in diameter and relatively smooth surfaces- measured without the Al substrate, coercivity decreases as temperature rises. These temperature dependences of magnetic hysteresis are described in terms of an effective magnetic anisotropy $K_a$, resulting from the interplay of magnetocrystalline, magnetoelastic and shape anisotropies, together with the magnetostatic interaction energy density between nanowires in the array. The experimentally determined coercive fields are compared with results of micromagnetic calculations, performed considering the magnetization reversal mode acting in each studied array and microstructure parameters. A method is proposed to roughly estimate the value of $K_a$ experimentally, from the hysteresis loops measured at different temperatures. These measured values are in agreement with theoretical calculations. The observed temperature dependence of coercivity does not arise from an intrinsic property of pure Ni but from the nanowires surface roughness and the way the array is measured, with or without the alumina template and/or the aluminum support.

고용량 영구자석형 모터의 회전자 착자를 위한200 kJ급 착자기의 착자요크 회로정수 설계 방법에 관한 연구 (A Study on the Design Method of Magnetizing Yoke Circuit Constant of 200kJ Magnetizer for Rotor Magnetization of High Capacity Permanent Magnet Motors)

  • 정민욱;이숭근;백권후;김태규
    • 한국산업정보학회논문지
    • /
    • 제28권2호
    • /
    • pp.21-30
    • /
    • 2023
  • 전기차 보급과 고성능화가 진행됨에 따라 높은 출력을 가지는 모터의 수요가 증가하고 고용량 IPMSM 생산을 위한 고용량 착자기의 중요성 또한 증가하고 있다. 착자에 중요한 착자 전류의 최댓값과 커패시터 방전시간은 착자요크의 회로정수에 의해 결정된다. 본 논문에서는 착자기 설계를 위한 착자요크의 회로정수 설계를 위하여 MATLAB SIMULINK를 활용한 착자 시스템의 해석을 진행하고 회로정수 설계를 위한 설계 절차를 제시한다. 그 결과 착자용량 5,000[V], 15,000[uF]에 따라 착자요크 파라미터는 0.015[ohm], 0.035[mH]로 도출하였다.