• Title/Summary/Keyword: Magnetic shielding

Search Result 205, Processing Time 0.061 seconds

Study on the Electromagnetic Shielding of Accessory Device without Electromagnetic Shielding Technology in the Magnetic Resonance Room (자기공명검사실 내 전자기파 차단이 이루어지지 않은 부속장치의 차폐에 관한 연구)

  • Son, Soon-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.431-436
    • /
    • 2021
  • In this study, a new shielding method was applied to an accessory device that produces electromagnetic waves in the magnetic resonance room to prevent the generation of artifact caused by electromagnetic waves. The research method applied a new shielding made of metal plating fiber to patient surveillance CCTVs without shielding technology, and obtained and evaluated noise map when the power was not cut off and when the new shielding technology was applied without shutting down the CCTV. As a result of the study, it was found that there was at least one group with significant differences. Type I and type III belonged to group 1 while type II belonged to group 2 in the Post-hoc analysis, which meant blocking power of the CCTV and the applying new shielding technology were in the same group. In conclusion, if electromagnetic waves are generated due to additional accessories in the scanning room, the shielding material proposed in this study should be applied which enables the electric state become similar to type I, not generating noise, thereby preventing the artifacts caused by electromagnetic waves.

Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

  • Lee, Yu-Kyeong;Hwang, Jun-Won;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.46-49
    • /
    • 2016
  • The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

Improvement of Electromagnetic Shielding Structure for Reduction of the Leakage Magnetic Field in WPT System (WPT 시스템의 누설자계 감소를 위한 전자파 차폐구조 개선)

  • Kim, Jongchan;Lee, Seungwoo;Kang, Byeong-Nam;Hong, Ic-Pyo;Cho, In-Kui;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • In this paper, we propose an improved magnetic field shielding structure to reducing the magnetic field generated in the wireless power transfer system operating at a low frequency band. The proposed structure consists of the magnetic material and the conductive material, magnetic field cancelling effect for power transfer is minimized while improving the leakage magnetic field cancelling effect by optimizing the various design parameters in the proposed structure. We analyzed and verified the efficiency of the wireless power transfer system and the reduction effect of the leakage magnetic field through computer simulation and measurement. Analysis results show that power transfer efficiency of the wireless power transfer system utilizing the proposed structure is 77 %, which is maintained at the conventional power transfer efficiency. In addition, compared with the structure maintaining high power transfer efficiency, leakage magnetic field strength is reduced to 29~37 % at the nearest point.

Study on the Magnetic Shield Effect of Carbon-based Materials at Extremely Low Frequency (탄소계 소재를 이용한 극저주파 영역에서의 자기 차폐효과 연구)

  • Oh, Seong Moon;Kang, Dong Su;Lee, Sang Min;Baek, Un Gyeong;Roh, Jae Seung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • To examine the magnetic shielding effect for carbon-based materials at extremely low frequencies (60 Hz), two types of carbon black (Super-P and Denka Black) and a natural graphite (HC-198) were mixed into organic binder at 10 wt.% to produce a coating solution, and a powder coating with varying thickness was applied on an aluminum disk measuring 88 mm in radius. A device was developed to measure the sheielding effect at extremely low frequencies. A closed circuit was achieved by connecting a transformer and a resistor. The applied voltage was fixed at 65 V, and the magnetic field was measured to being the range of 4.95~5.10 mG. Depending on the thickness of the coating layer, the magnetic field showed a decreasing trend. The maximum decrease in the magnetic field of 38.3% was measured when natural graphite was coated with specimens averaging $455{\mu}m$. This study confirmed that carbon-based materials enable magnetic shielding at extremely low frequencies, and that the magnetic shielding effect can be enhanced by varying the coating thickness.

Analysis and Improvement of Shielding Effect of Electromagnetic Field in Extremely Low Frequency System (극저주파 시스템에서 전자장 차폐효과 해석 및 개선 방안)

  • Kim, Sang-Hon;Choi, Hong-Soon;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.978-979
    • /
    • 2006
  • Recently, Peoples are exposed the ELF(Extremely Low Frequency) magnetic fields in the vicinity of underground transmission lines, and there are the generally accepted opinion that the magnetic fields affect the human body and there are possibility of the disease. Also in relation to this problem, technical solution methods and research are advanced for reducing the magnetic fields. In this paper, to practically understand the magnetic fields underground transmission lines, We analyze the electromagnetic field distribution in the underground transmission lines by means of FEM(Finite Element Methods) and present that improvement of the effective shielding methods by applying cable arrangements and shielding materials, eddy current problem to the underground transmission lines by means of the numerical analysis Tool.

  • PDF

Electromagnetic Wave Shield Characteristics of Thermal Sprayed Ferrite Coatings (자성 페라이트 용사피막의 전자파 차폐 특성)

  • 정태식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • In these days, many advanced nations have enforced import restrictions against things emitting electromagnetic wave which has report that it is so harmful. In general, electromagnetic wave is composed of electric wave and magnetic wave. The reflection of electromagnetic wave is mainly reflected by conductive materials and the magnetism loss is generated by magnetic ferrite. The magnetism loss of ferrite is separated by eddy current loss, residual magnetism loss and hysteresis loss. Thermal sprayed coating is intended to manufacture because of simple processes and high efficient electromagnetic wave shielding. The high efficient thermal sprayed coatings were made from the magnetic ferrite materials that characterizes absorption of electromagnetic wave, and the electric conductive materials that characterize emitting of electromagnetic wave. This study was manufactured thermal sprayed coatings to improve absorption-efficiency, and measured the electromagnetic wave shielding efficiency. As the experimental results, high electromagnetic wave shield efficiency was obtained at wave frequency 2GHz to thermal sprayed ferrite coatings manufactured by size distribution range of spray powders, $38~88\mu\textrm{m}$.

Investigation of shielding effects of 60Hz ELF magnetic fields on shielding material property (차폐재의 재료특성에 따른 60Hz ELF 자계차폐 효과분석)

  • Min, Suk-Won;Song, Ki-Hyun;Myung, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1960-1962
    • /
    • 2004
  • In this paper, we have studied shielding characteristics of high conductivity or high permeability materials on ELF magnetic fields generated from single or three phase AC line. Perm alloy has been selected as high permeability material and copper as high conductivity material. Four-plate shield (square section) was considered as a shielding shape. We found copper showed stable shielding effects more than perm alloy.

  • PDF

Magnetic Field Reduction Characteristics of Shielding Wear Materials for Workers Using AC Arc Welder (교류 아크용접기를 사용하는 작업자의 차폐복 재질에 따른 자계저감 특성검토)

  • Park, Jun-Hyeong;Min, Suk-Won;Lee, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1265-1271
    • /
    • 2010
  • Power cable of an AC arc welder can surround a body of worker at the moment of welding. Applying the boundary element method, we calculated current densities induced in organs inside a worker to study the magnetic field reduction characteristics of shielding wear materials. We knew shielding wear with high permeability materials lowers current density more than high conductivity materials. We also found current density was lowest when high permeability materials were inside high conductivity materials in double layer shielding wear.

Analysis of WPT Characteristics by Shielding Materials (차폐 재질에 따른 무선전력전송 특성 분석)

  • Lee, Yu-Kyeong;Jeong, In-Sung;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.623-628
    • /
    • 2015
  • In this paper, the shield plate was applied to the wireless power transfer (WPT) system. Then we compared transmission efficiency of WPT system between transmitter and receiver coils. The superconductor coil was applied to transmitter and receiver coils in order to increase the transmission efficiency of WPT. The superconductor coil was more effective to power transmission as its current density was higher than normal conductor coil. Efficiency of WPT between transmitter and receiver coils was changed by a quality of shielding. We used the shielding materials such as glass, iron, steels, aluminum etc. The efficiency of WPT system was depended on the shielding materials of transmitter and receiver coils. As a result, magnetic material such as aluminum, iron reduced the magnetic flux density and the efficiency of WPT. remarkably, but in non-magnetic material such as glass and plastic, the efficiency of WPT was unaffected.