• Title/Summary/Keyword: Magnetic sensor

Search Result 1,071, Processing Time 0.027 seconds

The Enhanced Off-Diagonal Magneto-Impedance Effect in Cu/Ni80Fe20 Core-Shell Composite Wires Fabricated by Electrodeposition under Torsional Strain (비틀림 스트레인 하에서 전기도금으로 만든 Cu 코어/Ni80Fe20 쉘 복합 와이어에서 비대각 자기임피던스(Off-diagonal Magneto-Impedance) 효과의 증대)

  • Kim, Dong Young;Yoon, Seok Soo;Lee, Sang Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.135-139
    • /
    • 2017
  • The magneto-impedance effect (MI effect) has been investigated in metal core/soft magnetic shell composite wires fabricated by electrodeposition of $Ni_{80}Fe_{20}$ on Cu wire (diameter $190{\mu}m$). The diagonal impedances $Z_{zz}$ and $Z_{{\theta}{\theta}}$ in cylindrical coordinate showed strong MI effect for the magnetic field applied along z-axis, while the off-diagonal impedance $Z_{{\theta}z}$ showed very weak MI effect. We have tried to develop the Cu $core/Ni_{80}Fe_{20}$ shell composite wire having strong MI effect in off-diagonal impedance by electrodeposion under torsional strain. The core/shell composite wire electrodeposited under torsional angles above $270^{\circ}$ showed significantly enhanced MI effect in the off-diagonal impedance. The maximum MI effect was observed in the composite wire electrodeposited under torsional angle of $360^{\circ}$. The developed method to enhance off-diagonal MI effect is expected to increase the applicability of the core/shell composite wire to magnetic sensor material.

Post-annealing Effect of Giant Magnetoresistance-Spin Valve Device for Sensor (센서용 거대자기저항 스핀밸브소자의 열처리 효과)

  • Lee, Sang-Suk;Park, Sang-Hyun;Soh, Kwang-Sup;Joo, Ho-Wan;Kim, Gi-Wang;Hwang, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.172-177
    • /
    • 2007
  • In order to detect of the magnetic property in the cell unit, we studied the GMR-SV (giant magnetoresistance-spin valves) biosensor, which was depended on the micro patterned features according to two easy directions of longitudinal and transversal axes. Here, the multi layer structure was glass/NiO/NiFe/CoFe/Cu/CoFe/NiFe. The uniaxial anisotropy direction was applied to the patterned biosensor during the deposition and vacuum post-annealing at $200^{\circ}C$ under the magnitude of 300 Oe, respectively. Considering the magnetic shape anisotropy effect, the size of micro patterned biosensor was a $2{\times}5{\mu}m^2$ after the photo lithography process. By our experimental results, we confirmed that the best condition of GMR-SV biosensor should be the same direction of the axis sensing current and the easy axis of pinned NiO/NiFe/CoFe triple layer oriented to the width direction of device, and the direction of the easy axis of free CoFe/NiFe bilayer was according to the longitudinal direction of device.

Sensor Fusion of Localization using Unscented Kalman Filter (Unscented Kalman filter를 이용한 위치측정 센서융합)

  • Lee, Jun-Ha;Jung, Kyung-Hoon;Kim, Jung-Min;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.667-672
    • /
    • 2011
  • This paper presents to study the sensor fusion of positioning sensors using UKF(unscented Kalman filter) for positioning accuracy improvement of AGV(automatic guided vehicle). The major guidance systems for AGV are wired guidance and magnetic guidance system. Because they have high accuracy and fast response time, they are used in most of the FMS(flexible manufacturing system). However, they had weaknesses that are high maintenance cost and difficult of existing path modification. they are being changed to the laser navigation in recent years because of those problems. The laser navigation is global positioning sensor using reflecters on the wall, and it have high accuracy and easy to modify the path. However, its response time is slow and it is influenced easily by disturbance. In this paper, we propose the sensor fusion method of the laser navigation and local sensors using UKF. The proposed method is improvement method of accuracy through error analysis of sensors. For experiments, we used the axle-driven forklift AGV and compared the positioning results of the proposed method with positioning results of the laser navigation. In experimental result, we verified that the proposed method can improve positioning accuracy about 16%.

GPS/INS Integration and Preliminary Test of GPS/MEMS IMU for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/MEMS IMU 센서 검증 및 GPS/INS 통합 알고리즘)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.225-234
    • /
    • 2009
  • Real-time Aerial Monitoring System (RAMS) is to perform the rapid mapping in an emergency situation so that the geoinformation such as orthophoto and/or Digital Elevation Model is constructed in near real time. In this system, the GPS/INS plays an very important role in providing the position as well as the attitude information. Therefore, in this study, the performance of an IMU sensor which is supposed to be installed on board the RAMS is evaluated. And the integration algorithm of GPS/INS are tested with simulated dataset to find out which is more appropriate in real time mapping. According to the static and kinematic results, the sensor shows the position error of 3$\sim$4m and 2$\sim$3m, respectively. Also, it was verified that the sensor performs better on the attitude when the magnetic field sensor are used in the Aerospace mode. In the comparison of EKF and UKF, the overall performances shows not much differences in straight as well as in curved trajectory. However, the calculation time in EKF was appeared about 25 times faster than that of UKF, thus EKF seems to be the better selection in RAMS.

Evaluating Performance of Cable-Inspection Robot in Cable-Supported Bridge (케이블지지 교량의 케이블 점검 로봇 성능 평가)

  • Kim, Jaehwan;Seo, Dong-Woo;Jung, Kyu-San;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.74-79
    • /
    • 2020
  • Safety inspection of cable-supported bridge has increasingly attention as many cable-supported bridges are currently constructed/operated. Whilst cables as a main component in cable-supported bridge should be inspected regularly, traditional method (visual inspection) has limitation to check the condition of cables properly due to restricted factors. It is evidently necessary to develop cable-inspection robot to overcome this concern. In this respect, the main aim in this study is to manufacture the improved robot compared with the existing robot. The improved functions of the robot in this study were that the robot can be operated in large cable diameter (greater than 200 mm) and climbing ability of the robot increases. In addition, electro-magnetic sensor as a non-destructive method in the robot was added to detect damaged cables and performance of the sensor was evaluated in indoor and field experiments. Consequently, the robot was able to move on the cable with ~0.2m/s and to detect damaged cables using the sensor. It was also confirmed that performance of the robot in field test is similar to that in indoor test.

Experimental Study on Position Control System Using Encoderless Magnetic Motion (엔코더리스 마그넷 모션을 이용한 위치제어에 대한 리니어모터 실험적 연구)

  • Kim, Hong-youn;Yun, Young-Min;Shim, Ho-Keun;Kwon, Young-Mok;Heo, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • A position control system composed of the PMLSM(Permanent Magnet Linear Synchronous Motor), unlike conventional linear permanent magnet synchronous motor is fixed to the permanent magnet moving coil rails (permanent magnet = stator, coil = mover), the coil is fixed, moving the permanent magnet, we propose a position control system (permanent magnet = mover, coil = stator) structure. Position is measured not using conventional encoder or resolver but by adopting vector control method using 2 hall sensors generating rectangular signal. This method estimate the velocity and position of mover by using the quadruple of two hall sensor signal instead of encoder signal. Vector control of PMLSM using 2 hall sensor generating rectangular wave is proved to control the system stable and efficiently through simulation. Also hardware experiment reveals that the position control performance is measured within the range of $30{\sim}50{\mu}m$ in the accuracy of $10{\sim}20{\mu}m$, which is improved twice to the conventional method. The proposed method exhibits its economical efficiency and practical usefulness. The vector control technique using two hall sensors can be installed in narrow place, accordingly it can be implemented on the system where the conventional encoder or resolver cannot operate.

High Sensitive Strain Detection of FeCoSiB Amorphous Films (아몰퍼스 FeCoSiB 박막의 고감도 스트레인 검출특성)

  • Shin, Kwang-Ho;Arai, Ken-Ichi;SaGong, Geon
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.22-27
    • /
    • 2000
  • Amorphous FeCoSiB films with high saturation magnetostriction and excellent soft magnetic properties have been studied to evaluate their strain sensitivity. Films were subjected to a strain by bending of their substrates, which caused a change in the magnetic anisotropy of films via magnetoelastic coupling. Films were exhibited a figure of merit $F=({\Delta}{\mu}/{\mu})/{\varepsilon}$ (change in film permeability $\mu$ per unit strain $\varepsilon$) of $1.2{\times}10^5$, which is comparable with that of amorphous ribbons. To make a study of application of magnetostrictive films as strain sensor elements, we have prepared a micro-patterned film by means of the photolithography and ion milling processes. Impedance change in the patterned films, when strain was applied, was measured over the frequency range from 1 MHz to 1 GHz. Reflecting a large value of figure of merit F, a variation of 46% impedance of films was shown at 100 MHz frequency when a strain of $300{\times}10^{-6}$ was applied.

  • PDF

Study on MFL Technology for Defect Detection of Railroad Track Under Speed-up Condition (증속에 따른 누설자속기반 철도레일 결함탐상 기술 적용성 검토)

  • Kang, Donghoon;Oh, Ji-Taek;Kim, Ju-Won;Park, Seunghee
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.401-409
    • /
    • 2015
  • Defects generated in a railroad track that guides the railroad vehicle have the characteristic of growing fast; as such, the detection technology for railroad track defects is very important because defects can eventually cause mass disasters like derailments. In this study, a speed-up test facility was fabricated to investigate the feasibility of using magnetic flux leakage (MFL) technology for defect detection in a railroad track under speed-up condition; a test was conducted using a railroad track specimen with defects. For this purpose, an MFL sensor head dedicated to the configuration of the railroad was designed and test specimens with artificial defects on their surfaces were manufactured. Using the test facility, a speed-up test ranging from 4km/h to 12km/h was performed and defects including locations were successfully detected from MFL signals induced by defects with enhanced visibility by differentiating raw MFL signals. In the future, it should be possible to apply this system to a high-speed railroad inspection car by improving the lift-off stability that is necessary for speed-up of the developed MFL sensor system.

A Study on Stabilization of Underwater TAS Winch System Deploy/Recover Operation Performance (수중용 TAS윈치 전개/회수 성능 안정화 방안에 관한 연구)

  • Chang, Ho-Seong;Cho, Kyu-Lyong;Hwang, Jae-Gyo;Lee, Sang-Yong;Kim, Yong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.472-482
    • /
    • 2019
  • This paper describes the stabilization of underwater TAS winch system Deploy/Recover operation performance. TAS winch installed on the stern of submarine performs to deploy/recover sensor, towing cable and rope tail which is deployed from the stern and separated from submarine itself. Also TAS winch provides transmission path of power to the sensor and data transmitting/receiving path which data are acquired from underwater environment like sound, depth and temperature. At the step of TAS winch evaluation test, sporadic standstill and rotating speed oscillation phenomenon were occurred. Winch motor provides the available torque to deploy/recover TAS and root cause analysis to the winch motor was done to find exact reason to sporadic malfunction. When winch motor was disassembled, eccentricity of rotor, slip-ring and the other composition part for winch motor were found. These might cause magnetic field distortion. To make TAS winch system more stable and block magnetic field distortion, this paper suggests methods to enhance fixing status installed in winch motor. For reliable data acquisition for TAS winch operation, the deploy/recover function of the improved type of TAS winch was verified in LBTS making similar condition with sea status. At the end of stage, improved type of TAS winch was tested on some functions not only deploy/recover function, but sustainability of TAS operation on specific velocity, steering angle of submarine in the sea trial. Improved type of TAS winch was verified in accordance with design requirement. Also, validity of suggested methods were verified by the sea trial.

Indoor Positioning System using Geomagnetic Field with Recurrent Neural Network Model (순환신경망을 이용한 자기장 기반 실내측위시스템)

  • Bae, Han Jun;Choi, Lynn;Park, Byung Joon
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.57-65
    • /
    • 2018
  • Conventional RF signal-based indoor localization techniques such as BLE or Wi-Fi based fingerprinting method show considerable localization errors even in small-scale indoor environments due to unstable received signal strength(RSS) of RF signals. Therefore, it is difficult to apply the existing RF-based fingerprinting techniques to large-scale indoor environments such as airports and department stores. In this paper, instead of RF signal we use the geomagnetic sensor signal for indoor localization, whose signal strength is more stable than RF RSS. Although similar geomagnetic field values exist in indoor space, an object movement would experience a unique sequence of the geomagnetic field signals as the movement continues. We use a deep neural network model called the recurrent neural network (RNN), which is effective in recognizing time-varying sequences of sensor data, to track the user's location and movement path. To evaluate the performance of the proposed geomagnetic field based indoor positioning system (IPS), we constructed a magnetic field map for a campus testbed of about $94m{\times}26$ dimension and trained RNN using various potential movement paths and their location data extracted from the magnetic field map. By adjusting various hyperparameters, we could achieve an average localization error of 1.20 meters in the testbed.