• Title/Summary/Keyword: Magnetic reversal

Search Result 111, Processing Time 0.026 seconds

Magnetic Field Dependence of the Activation Volume for Sr-ferrite Particles (Sr-페라이트 자성 입자의 활성화 부피의 자기장 의존성)

  • Kim, Hyeon Soo;Jeong, Soon Young;Kim, Kyung Min;Kwon, Hae-Woong
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.196-200
    • /
    • 2016
  • In this study the mechanisms of magnetization reversal and magnetic interaction effects on activation volumes for Sr-ferrite with different particle sizes are investigated. The activation volumes of C2 sample are larger than those of C3 sample in the range of low magnetic fields. But the fields above the coercivity of sample C2, the activation volumes of both samples are decreased linearly with increasing the applied magnetic field. These phenomena can be explained by the strengths of two critical fields representing the reverse domain nucleation field and the domain wall pinning field as well as the strength of dipolar interaction.

GMR in Multilayers with an Alternating In-plane and Perpendicular Anisotropy

  • Stobiecki, F.;Szymanski, B.;Lucinski, T.;Dubowik, J.;Urbaniak, M.;Roll, K.;Kim, J.B;Kim, K.W;Lee, Y.P
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.40-46
    • /
    • 2004
  • The magnetic properties of sputtered ($Ni_{83}Fe_{17}/Au/Co/Au$) multilayers with various thicknesses of Au (0.5 {\leq} t_{Au} {\leq} 3 nm), Ni-Fe ($1{\leq}t_{Ni-Fe}{\leq}4nm$) and Co ($0.2{\leq}t_{co}{\leq}1.5nm$) layers were characterized. An alternating in-plane and out-of-plane anisotropy of the ferromagnetic layers was achieved for the structures ($t_{Au}{\geq}1.5nm$) showing a weak coupling between the Ni-Fe layers with an in-plane anisotropy and the Co layers ($0.3{\leq}t_Co{\leq}1.2nm$) with a perpendicular anisotropy. For such a structure, a detailed discussion on the GMR effect is presented, relating to the magnetization reversal from a mutually perpendicular magnetic configuration at the remanence to a parallel one at the saturation. An influence of the dense labyrinth domain structure on the magnetoresistance effect is also addressed.

Spin Transport in a Ferromagnet/Semiconductor/Ferromagnet Structure: a Spin Transistor

  • Lee, W.Y;Bland, J.A.C
    • Journal of Magnetics
    • /
    • v.7 no.1
    • /
    • pp.4-8
    • /
    • 2002
  • The magnetoresistance (MR) and the magnetization reversal of a lateral spin-injection device based on a spin-polarized field effect transistor (spin FET) have been investigated. The device consists of a two-dimensional electron gas (2DEG) system in an InAs single quantum well (SQW) and two ferromagnetic $(Ni_{80}Fe_{20})$ contacts: all injector (source) and a detector (drain). Spin-polarized electrons are injected from the first contact and, after propagating through the InAs SQW are collected by the second contact. By engineering the shape of the permalloy contacts, we were able to observe distinct switching fields $(H_c)$ from the injector and the collector by using scanning Kerr microscopy and MR measurements. Magneto-optic Kerr effect (MOKE) hysteresis loops demonstrate that there is a range of magnetic field (20~60 Oe), at room temperature, over which the magnetization in one contact is aligned antiparallel to that in the other. The MOKE results are consistent with the variation of the magnetoresistance in the spin-injection device.

APPLICATIONS OF ASYMMETRIC HYSTERESIS LOOPS IN AMORPHOUS ALLOYS

  • Jr., C.D. Graham;Shin, K-H.;Zhou, Peter Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.579-582
    • /
    • 1995
  • The use of amorphous magnetic alloys as tags or targets in electronic article surveillance systems such as antishoplifting desvices is briefly reviewed. Improved tags became possible with the discovery in 1988 of asymmetric magnetization reversal (AMR) in certain amorphous alloys annealed in applied field approximately equal to the earth's field. These asymmetric hysteresis loops are highly unusual, if not unique, and so greatly diminish the probability of false alarms in a detection system. furthermore, the jump field Hj, which is the coercive field in negative applied fields, can be controlled over a useful range by controlling the field applied to the sample during annealing. By applying several tags to an object, each with a different jump field, it is possible to identify the object with a numeric code that can be remotely read by nonoptical means.

  • PDF

CHARACTERIZATION OF MAGNETIZATION BEHAVIOR IN Co/Pd PERPENDICULAR ANISOTROPIC MULTILAYERS

  • Oh, Hoon-Sang;Joo, Seung-Ki
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.655-658
    • /
    • 1995
  • Magnetization behavior of sputter-deposited Co/Pd multilayers were characterized, and it has been found that even when the multilayers are sputtered at low pressure (10 mTorr), the coercivity of the multilayers can be increased to large extent without noticeable change of saturation magnetization by increasing the deposition pressure of Pd underlayer. It turned out that the surface topology of Pd underlayer gets rough as deposition pressure increases, which consequently affects the magnetization reversal mode of Co/Pd multilayers from domain wall motion to magnetic spin rotation. The enhancement of coercivity is attributed to the domain wall pinning effect which is comected with the surface roughness of Pd underlayer on which Co/Pd multilayers grow.

  • PDF

Spin-polarized Current Switching of Co/Cu/Py Pac-man type II Spin-valve

  • Lyle, Andrew;Hong, Yang-Ki;Choi, Byoung-Chul;Abo, Gavin;Bae, Seok;Jalli, Jeevan;Lee, Jae-Jin;Park, Mun-Hyoun;Syslo, Ryan
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.103-107
    • /
    • 2010
  • We investigated spin-polarized current switching of Pac-man type II (PM-II) nanoelements in Pac-man shaped nanoscale spin-valves (Co/Cu/Py) using micromagnetic simulations. The effects of slot angle and antiferromagnetic (AFM) layer were simulated to obtain optimum switching in less than 2 ns. At a critical slot angle of $105^{\circ}$, the lowest current density for anti-parallel to parallel (AP-P) switching was observed due to no vortex or antivortex formation during the magnetic reversal process. All other slot angles for AP-P formed a vortex or antivortex during the magnetization reversal process. Additionally, a vortex or anti-vortex formed for all slot angles for parallel to anti-parallel (P-AP) switching. The addition of an AFM layer caused the current density to decrease significantly for AP-P and P-AP at slot angles less than $90^{\circ}$. However, at slot angles greater than $90^{\circ}$, the current density tended to decrease by less amounts or actually increased slightly as shape anisotropy became more dominant. This allowed ultra-fast switching with 5.05 and $5.65{\times}10^8\;A/cm^2$ current densities for AP-P and P-AP, respectively, at a slot angle of $105^{\circ}$.

Visual Evoked Potentials in Retrochiasmal Lesion; Correlation with Neuroimaging Study (시각유발전위 검사상 후-시신경교차부위병변을 보인 환자들의 뇌 영상 결과와의 연관성)

  • Kim, Sung Hun;Cho, Yong-Jin;Kim, Ho-Jin;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 2000
  • Background and Objective : Visual evoked potentials(VEPs) is considered to be a reliable diagnostic procedure for examining patients with anterior visual pathways. Some abnormalities in the recordings on monocular stimulation have been said to indicate retrochiasmal lesion, but less consistent results have been reported. This study is to evaluate the positive predictability of VEP for the detection of retrochiasmal lesion. Methods : We reviewed VEPs that could be interpreted as indicative of a retrochiasmal lesions, based on amplitude or latency asymmetry recorded on the left(O1) and right(O2) occipital regions. Bilateral absent VEPs on both recording(O1 and O2) without evidence of prechiasmal lesion were included. During 5 years, we identified 31 patients who met the above criteria and who had undergone magnetic resonance imaging(MRI) of brain(one patient underwent computerized tomography). Twenty three patients underwent pattern reversal VEPs and others underwent flash goggle VEPs. Results : Brain imagings were abnormal in 29 and were normal in 2. Of the 29 abnormal scans, lesions in posterior visual pathway were detected in 21 scans(predictive value=68%). The predictive value was not significantly different between flash goggle VEP(75%) and pattern reversal VEP(68%). The predictive value was higher in patient with visual field defect(100%) than those without visual field defect(25%). The pathologic nature of lesion also showed close relations to the predictive value. VEPs is usually paradoxically lateralized(78%), but not in all patients. Conclusion : VEPs abnormalities suggesting retrochiasmal lesion were usually corresponded with brain MRI findings. Diagnostic reliability could be increased when considering the visual field defect and nature of lesion. Therefore, the authors suggest that VEPs studies could be useful in evaluating the patients with the retrochismal lesion.

  • PDF

Paleomagnetic Study of the Lower Ordovician Formations in the North Eastern Okcheon Zone (옥천대 북동부에 분포하는 하부 고생대층에 대한 고지자기 연구)

  • Min, Kyung Duck;Lee, Youn Soo;Hwang, Suk Yeon
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.395-401
    • /
    • 1993
  • Lower Ordovician rock samples were collected from 23 sites located at the Okcheon non-metamorphic zone, near Taeback and Yeongweol areas, southern part of the Korean Peninsula. A characteristic magnetic component was obtained from four sites. This stable direction ($Dm=-19.4^{\circ}$, $Im=24.1^{\circ}$) which is carried by hematite of very high temperature $679^{\circ}C$), successfully pass both of reversal test and paleopole reliability test, and is regarded as a primary direction. The remagnetized components can be divided into three on the basis of their characteristic directions and magnetic minerals. The first which is carried by hematite, magnetite and pyrrhotite, is widely found at the whole sites. It shows syn- or post-tectonic remagnetization according to strongly negative fold test and distribution between Mesozoic and present field directions. The second, in situ, is distinguishable from the present field direction. After bedding correction, it is identical to Late Triassic to Early Jurassic direction. Its magnetic carrier is considered to be a single component hematite, which may be acquired by pre-tectonic CRM in the Okcheon orogenic zone. The third, which is carried by magnetite and hematite, is characterized by stable reversed direction. These minerals may be acquired by the thermal or chemical process in unknown period. Paleopole position is $169.2^{\circ}E$ in longitude and $59.9^{\circ}S$ in latitude, which indicates that the study area was located at $12.6^{\circ}S$ in paleo-latitude and belonged to northern end of the Gondwana in Early Ordovician.

  • PDF

Study on Heterogeneous Structures and High-Frequency Magnetic Properties Amorphous CoZrNb Thin Films (비정질 CoZrNb 박막의 불균일 구조와 고주파 자기특성에 관한 연구)

  • 정인섭;허재헌
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.31-36
    • /
    • 1991
  • Structural and compositional heterogeneities of sputter deposited, amorphous $Co_{87}Zr_{4}NB_{9}$ thin films were investigated using TEM and EDS with windowless detector. The films deposited with substrate bias and annealed in rotating magnetc field showed two amorphous phases of Co-rich region and (ZrNb)oxide-rich region, and revealed 'ultra-soft' magnetic properties. Revesible bias-responses and overdamped frequency responses, along with small Hc, Hk and Mr/Ms ratio, give the possibility of ultra-soft magnetic behavior fo CoZrNb thin films. We proposed the vortex type magnetization distribution in remanent state which was correlated with the thin film heterogeneity. Then, the ultra-soft characteristics of the compositionally heterogeneous films were explained by the spin vortices that minimized the total magnetostatic and exchange coupling energies.

  • PDF