• 제목/요약/키워드: Magnetic nanocomposite

검색결과 129건 처리시간 0.028초

Structure and Magnetic Properties of Sm-Co(x nm)/Co(6 nm) Multi-layered Nanocomposite Films

  • Yang, Choong-Jin;You, Cai-Yin;Zhang, Zhi-Dong
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2002년도 동계연구발표회 논문개요집
    • /
    • pp.24-25
    • /
    • 2002
  • Tthe structure and magnetic properties of Sm-Co/co films treated at various annealing temperatures and times are reported, The effects of an externally applied magnetic field during annealing, were also investigated. These result is discussed in terms of magnetization reversal of nano grains which seems to compete with the exchange interaction occurring between the nano grains. (omitted)

  • PDF

Fabrication of Metallic Particle Dispersed Ceramic Based Nanocomposite Powders by the Spray Pyrolysis Process Using Ultrasonic Atomizer and Reduction Process

  • Choa, Y.H.;Kim, B.H.;Jeong, Y.K.;Chae, K.W.;T.Nakayama;T. Kusunose;T.Sekino;K. Niibara
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.151-156
    • /
    • 2001
  • MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~$^800{\circ}C$), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~$^800{\circ}C$. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.

  • PDF

Influence of Ni Addition on Mechanical and Magnetic Properties of Yttria-Stabilized Tetragonal Zirconia

  • Kondo, H.;Sekino, T.;Choa, Y.H.;Kusunose, T.;Nakayama, T.;Niihara, K.
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 2000년도 Proceedings of 2000 International Nano Crystals/Ceramics Forum and International Symposium on Intermaterials
    • /
    • pp.243-248
    • /
    • 2000
  • Effect of NiO addition on microstructure, stability of tetragonal phase and mechanical properties was investigated. (Y, Ni)-TZP solid solution was obtained by pressureless sintering. The fracture toughness was increased by solid solution of NiO. Neither reaction phase nor glassy phase was observed at the grain boundaries. From these results, it was determined that solid solution of NiO was destabilized tetragonal phase of Y-TZP. Y-TZP/Ni nanocomposite that contained nano-sized Ni particles was also fabricated by internal reduction method. Some evaluations and discussions were carried out for both (Y, Ni)-TZP solid solution and Y-TZP/Ni nanocomposite.

  • PDF

Resistive Switching Memory Devices Based on Layer-by-Layer Assembled-Superparamagnetic Nanocomposite Multilayers via Nucleophilic Substitution Reaction in Nonpolar Solvent

  • 김영훈;고용민;구본기;조진한
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.243.1-243.1
    • /
    • 2011
  • We demonstrate a facile and robust layer-by-layer (LbL) assembly method for the fabrication of nonvolatile resistive switching memory (NRSM) devices based on superparamagnetic nanocomposite multilayers, which allows the highly enhanced magnetic and resistive switching memory properties as well as the dense and homogeneous adsorption of nanoparticles, via nucleophilic substitution reaction (NSR) in nonpolar solvent. Superparamagnetic iron oxide nanoparticles (MP) of about size 12 nm (or 7 nm) synthesized with oleic acid (OA) in nonpolar solvent could be converted into 2-bromo-2-methylpropionic acid (BMPA)-stabilized iron oxide nanoparticles (BMPA-MP) by stabilizer exchange without change of solvent polarity. In addition, bromo groups of BMPA-MP could be connected with highly branched amine groups of poly (amidoamine) dendrimer (PAMA) in ethanol by NSR of between bromo and amine groups. Based on these results, nanocomposite multilayers using LbL assembly could be fabricated in nonpolar solvent by NSR of between BMPA-MP and PAMA without any additional phase transfer of MP for conventional LbL assembly. These resulting superparamagnetic multilayers displayed highly improved magnetic and resistive switching memory properties in comparison with those of multilayers based on water-dispersible MP. Furthermore, NRSM devices, which were fabricated by LbL assembly method under atmospheric conditions, exhibited the outstanding performances such as long-term stability, fast switching speed and high ON/OFF ratio comparable to that of conventional inorganic NRSM devices produced by vacuum deposition.

  • PDF

Study on the Interaction of Compound Bonded Magnets

  • Chang, Ying;Ma, Nuo;Yu, Xiaojun;Lian, Fazeng;Li, Wei
    • Journal of Magnetics
    • /
    • 제9권4호
    • /
    • pp.105-108
    • /
    • 2004
  • The attempt for the addition of double-phase nanocomposite $Nd_2Fe_{14}BFe_3B$ powders, respectively, into several $RE_2Fe_{14}B$(RE=Pr, Nd) powders with high magnetic properties was carried out. The powders were compounded and compressed to take shape bonded magnets. By means of investigating the variation of compound magnet $B_r$, the interaction between magnetic powders was revealed. The result shows that not chemical just but physical interaction exists between elements. The compound effect of $Nd_2Fe_{14}BFe_3B$-ferrite bonded magnets was detailed studied. The functional relation was revealed between magnetic properties and ferrite content. That is $Y = 5.42 x^2 -11.34x + 6.62$. The variation of $_iH_c$ temperature coefficient ${\beta}_{iHc}$ with ferrite content was investigated. Following the ferrite content increased, ${\beta}_{iHc}$ and $h_{irr}$ were obviously decreased, compression-resistant strength was enhanced.

급속소결에 의해 제조된 Al2O3/Fe-Ni 나노복합재료의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Al2O3/Fe-Ni Nanocomposite Prepared by Rapid Sintering)

  • 이영인;이근재;장대환;양재교;좌용호
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.203-208
    • /
    • 2010
  • A new High Frequency Induction Heating (HFIH) process has been developed to fabricate dense $Al_2O_3$ reinforced with Fe-Ni magnetic metal dispersion particles. The process is based on the reduction of metal oxide particles immediately prior to sintering. The synthesized $Al_2O_3$/Fe-Ni nanocomposite powders were formed directly from the selective reduction of metal oxide powders, such as NiO and $Fe_2O_3$. Dense $Al_2O_3$/Fe-Ni nanocomposite was fabricated using the HFIH method with an extremely high heating rate of $2000^{\circ}C/min$. Phase identification and microstructure of nanocomposite powders and sintered specimens were determined by X-ray diffraction and SEM and TEM, respectively. Vickers hardness experiment were performed to investigate the mechanical properties of the $Al_2O_3$/Fe-Ni nanocomposite.

Impact of nanocomposite material to counter injury in physical sport in the tennis racket

  • Hao Jin;Bo Zhang;Xiaojing Duan
    • Advances in nano research
    • /
    • 제14권5호
    • /
    • pp.435-442
    • /
    • 2023
  • Sports activities, including playing tennis, are popular with many people. As this industry has become more professionalized, investors and those involved in sports are sure to pay attention to any tool that improves athletes' performance Tennis requires perfect coordination between hands, eyes, and the whole body. Consequently, to perform long-term sports, athletes must have enough muscle strength, flexibility, and endurance. Tennis rackets with new frames were manufactured because tennis players' performance depends on their rackets. These rackets are distinguished by their lighter weight. Composite rackets are available in many types, most of which are made from the latest composite materials. During physical exercise with a tennis racket, nanocomposite materials have a significant effect on reducing injuries. Materials as strong as graphite and thermoplastic can be used to produce these composites that include both fiber and filament. Polyamide is a thermoplastic typically used in composites as a matrix. In today's manufacturing process, materials are made more flexible, structurally more vital, and lighter. This paper discusses the production, testing, and structural analysis of a new polyamide/Multi-walled carbon nanotube nanocomposite. This polyamide can be a suitable substitute for other composite materials in the tennis racket frame. By compression polymerization, polyamide was synthesized. The functionalization of Multi-walled carbon nanotube (MWCNT) was achieved using sulfuric acid and nitric acid, followed by ultrasonic preparation of nanocomposite materials with weight percentages of 5, 10, and 15. Fourier transform infrared (FTIR) and Nuclear magnetic resonance (NMR) confirmed a synthesized nanocomposite structure. Nanocomposites were tested for thermal resistance using the simultaneous thermal analysis (DTA-TG) method. scanning electron microscopy (SEM) analysis was used to determine pores' size, structure, and surface area. An X-ray diffraction analysis (XRD) analysis was used to determine their amorphous nature.

Effect of Fe Magnetic Nanoparticles in Rubber Matrix

  • Uhm, Young-Rang;Kim, Jae-Woo;Jun, Ji-Heon;Lee, Sol;Rhee, Chang-Kyu;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.173-178
    • /
    • 2010
  • A new kind of magnetic rubber, Fe dispersed ethylene propylene monomer (EPM), was prepared by a conventional technique using a two roll mill. The magnetic fillers of Fe-nanoparicles were coated by low density polyethylene (LDPE). The purpose of surface treatment of nanoparticles by LDPE is to enhance wettability and lubricancy of the fillers in a polymer matrix. The mechanical strength and microstructure of the magnetic rubber were characterized by tensile strength test and scanning electron microscopy (SEM). Results revealed that the Fe nanoparticles were relatively well dispersed in an EPM matrix. It was found that the nano- Fe dispersed magnetic rubber showed higher coercivity and tensile strength than those of micron- Fe dispersed one.