• Title/Summary/Keyword: Magnetic flux

Search Result 1,727, Processing Time 0.033 seconds

Magnetic Field Sensor by Using Magnetic Effect in YBaCO Superconductor (자기적 성질을 응용한 YBaCuO계 초전도 자기센서)

  • 이상헌
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.491-498
    • /
    • 2001
  • The relationship between electrical properties of YBaCuO superconductor and externally applied magnetic field was studied to develop a magnetic field apolarity sensor. The electrical resistance of the superconductor was increased by applying external magnetic field and even after removal of the magnetic field. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the materials by the external magnetic field. Some portion of the superconductor was changed to a normal state by the trapped magnetic flux. The appearance of the normal state yielded to enhance the electrical resistance. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive to the external magnetic field and showed different responses depending on the direction of the magnetic field. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Self Compensating Flux-gate Magnetometer Using Microcomputer (마이크로컴퓨터를 이용한 자체 보상형 flux-gate 마그네토미터제작)

  • Ga, E.M.;Son, D.;Son, D.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.149-153
    • /
    • 2002
  • Flux-gate magnetometer has been still used for low field magnetic field measurement with portability, low power consumption, and high reliability. In many applications, flux-gate magnetometer measures not absolute values but changes of the earth magnetic field. For the eia magnetic field change measurements, we have constructed a high sensitive 3-axis flux-gate magnetometer of which measuring ranges is ${\pm}$1000 nT and noise level is 5pT/√㎐ at 1 ㎐. Using this magnetometer, we can compensate the earth magnetic field of ${\pm}$50,000 nT with successive approximation methods using microcomputer. After earth magnetic field compensation, we could measure earth magnetic field changes with ${\pm}$100 nT measuring ranges.

A Feasibility Study for Estimating Prestressed Stress on a Steel Wire Using Permeability of Magnetic Flux (자속투과율을 이용한 부착식 PSC 강선의 긴장응력 추정 타당성 연구)

  • Kim, Byeong Hwa;Joh, Chang Bin;Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.219-225
    • /
    • 2013
  • This work examines the feasibility for estimating existing tensile stress on a stressed wire using the permeability of magnetic flux. A closed magnetic circuit has been constructed to induce magnetic flux inside a steel wire. With different tension stress levels on a wire, the permeability of magnetic flux on the wire has been measured. Two different experimental case studies have been conducted for the examination of sensitivity of permeability of magnetic flux on the stressed wire. One is a varying-length stress test, and the other is a fixed-length stress test. The results show that the permeability of magnetic flux in the varying-length stress test is inversely proportional to the applied stress, while the permeability in the fixed-length stress test is linearly proportional to the applied stress on the stressed wire. It is thus expected that the permeability of magnetic flux on a wire can be a promising indicator for the inspection of its tensile stress.

Magnetic field effect on the positive column of fluorescent lamp (형광등 Positive column에 대한 자장인가 효과)

  • 지철근;김창종
    • 전기의세계
    • /
    • v.31 no.3
    • /
    • pp.197-203
    • /
    • 1982
  • The effects on the characteristics of 20-W fluorescent lamp were studied when applying magnetic field to its positive column. First, when the direction of the magnetic field is axial, i.e., along the lamp, if the magnitude of the field is stronger than the critical field, lamp voltage is increased, lamp current decreased, luminous flux increased, starting voltage decreased, as increasing the applied magnetic field. At the magnetic flux density is 130 gauss, luminous flux is increased to about 6 percents and starting voltage is increased to about 45 percents. Second, when the direction of the magnetic field is transverse to the lamp axis, as increasing the applied magnetic field, lamp voltage is increased, lamp current decreased, luminous flux increased and starting voltage is nearly constant, but the rates of increase or decrease of this case is different from those of the first. At the magnetic flux density is 300 gauss, luminous flux is increased about 45 percents. In both cases, electric power dissipated by lamps is the same as that of the lamp which magnetic field is not applied to.

  • PDF

Solid Phase Crystallization of LPCVD Amorphous Silicon Thin Films by Alternating Magnetic Flux (교번자속인가에 의한 비정질 실리콘 박막의 결정화거동에 대한 연구)

  • 송아론;박상진;박성계;남승의;김형준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.459-462
    • /
    • 2000
  • A new method for the fabrication of poly-Si films is reported using by alternating magnetic flux crystallization (AMFC) of LPCVD a-Si films. In this work we have studied the crystallization of LPCVD a-Si films by alternating magnetic flux. A-Si films were 1200$\AA$-thick deposited at 48$0^{\circ}C$ at a total pressure of 0.25Torr using Si$_2$H$_{6}$/H$_2$. After this step, these a-Si films were thermally annealed by Alternating Magnetic Flux at 43$0^{\circ}C$ for 1hours. The annealed films were characterized using X-ray diffraction (XRD), Raman Spectra, Atomic Force Microscopy(AFM). Both alternating magnetic flux crystallization and solid phase crystallization were investigated to compare enhanced crystallization a-Si. We have found that the low temperature crystallization method at 43$0^{\circ}C$ by alternating magnetic flux.x.

  • PDF

Characteristic Analysis of a Permanent Magnet Transverse Flux Linear Motor with Spiral Core

  • Lee, Ji-Young;Kim, Ji-Won;Woo, Byung-Chul;Kang, Do-Hyun
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.111-116
    • /
    • 2013
  • This paper presents a characteristic analysis method of a permanent magnet type transverse flux linear motor (TFLM) with spiral cores. The spiral cores are used as the mover cores in order to make 3-dimensional (3-D) magnetic flux paths at the TFLM which have 3-D magnetic flux flows. The 3-D Equivalent Magnetic Circuit Network Method is used to analyse the magnetic characteristics of the machine, and an imaginary part, 'flux barrier,' is introduced to consider the spiral core characteristic. Magnetic parameters such as flux, inductance, and thrust are calculated from the analysis results. The computed thrust forces are compared to measured values to confirm the accuracy of the analysis.

Comparison of the Characteristics in the Surface Mounted Permanent Magnet and Flux Concentrating Coaxial Magnetic Gears Having the Solid Cores

  • Shin, Ho-Min;Chang, Jung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1275-1284
    • /
    • 2018
  • The coaxial magnetic gear with the flux concentrating structure is known that it has the torque performance advantage over the coaxial magnetic gear having surface mounted permanent magnet, thanks to the flux focusing effect. But, if the solid cores are used in the modulating pieces and rotor cores to consider the mechanical reliability and cost reduction, the operating torque of the flux concentrating coaxial magnetic gear can be significantly diminished because the iron losses at the solid cores affect the actual transmitted torque. Furthermore, the modulating pieces and rotor cores have different characteristics of the iron losses from one another, because the space harmonic components of the magnetic flux density, which cause the iron losses, are different. Thus, in this paper, we focused on the analysis of the characteristics of the space harmonic components of the magnetic flux density and resultant eddy current losses in the surface mounted PM and flux concentrating coaxial magnetic gears, when these coaxial magnetic gears have the solid cores at the modulating pieces and rotor cores. The characteristics of pull-out torque (static torque), operating torque (dynamic torque), and efficiency are also researched, and compared by the 3D finite element analysis (FEA) and experiment.

Comparison and Analysis on magnetic structures of Switched Reluctance Motors (Switched Reluctance Motor의 자기적 구조에 대한 비교 해석)

  • Oh, Seok-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.131-141
    • /
    • 2016
  • SRM is designed to meet operating standards such as low cost, simple magnetic structure, a desired operating speed range, high efficiency, high performance, and good matching for DC power. The magnetic flux of SRM is independent of its direction to develop a torque and it allows the flexible characteristics of the magnetic structure for SRM. In this paper, SRM can widely classify two types, Radial-Flux SRM and Axial-Flux SRM, according to the flux direction. Radial-Flux SRM includes Conventional, Segmented stator and rotor, and Double stator SRM, etc. and Axial-Flux SRM includes C-core stator and the Axial-airgap SRM. This paper is subjected the basic characteristics to select the best of the magnetic structure of SRM in the appropriate application by the classification of SRM.

HOW MUCH DOES A MAGNETIC FLUX TUBE EMERGE INTO THE SOLAR ATMOSPHERE?

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.84.2-84.2
    • /
    • 2012
  • We studied the controlling parameters of flux emergence with a focus on the relation between the configuration of coronal magnetic field and the pre-emeged state of subsurface magnetic field. We performed a series of magnetohydrodynamic simulations (dynamic model) and find an interesting result on the twist of coronal magnetic field, that is, the coronal magnetic field formed via flux emergence actually contains less amount of twist (relative magnetic helicity normalized by magnetic flux) than what is expected in kinematic models for global-scale solar eruptions. Based on this result, we propose another possible mechanism for producing these global-scale solar eruptions.

  • PDF

Correlation between Coil Configurations and Discharge Characteristics of a Magnetized Inductively Coupled Plasma

  • Cheong, Hee-Woon
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.222-228
    • /
    • 2016
  • Correlation between coil configurations and the discharge characteristics such as plasma density and the electron temperature in a newly designed magnetized inductively coupled plasma (M-ICP) etcher were investigated. Radial and axial magnetic flux density distributions as well as the magnetic flux density on the center of the substrate holder were controllable by placing multiple circular coils around the etcher. The plasma density increased up to 60.7% by arranging coils (or optimizing magnetic flux density distributions inside the etcher) properly although the magnetic flux density on the center of the substrate holder was fixed at 7 Gauss.