• Title/Summary/Keyword: Magnetic field shielding

Search Result 99, Processing Time 0.026 seconds

Magnetic Shielding Effect on Halbach Cylinder used in Magnetic Refrigerators

  • Baek, Un Bong;Lee, Jong Suk;Yu, Seong-Cho;Ryu, Kwon-Sang
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.349-352
    • /
    • 2014
  • The system for producing magnetic field constitutes an important component of magnetic refrigerator. Many researchers have directed significant effort to increase the magnetic field intensity, because the magnetocaloric effect at the Curie temperature increases with the power of 2/3 of the magnetic field. In this study, we report the simulation of the magnetic field intensity at polar axis of a Halbach cylinder (HC) by i) changing the length and thickness of the HC, ii) having with or without gap of the HC, and iii) surrounding the HC with a soft magnet shell, acting as a shielding. We simulated the field distribution of a HC with a finite size. Furthermore, the detailed numerical results of the magnetic field distribution and its dependence on shielding are presented in this study.

Design of Magnetic Field Compensation System Model for AC Magnetic Field Shielding (교류자기장 차폐를 위한 자기장 상쇄장치 모델의 설계)

  • Choi, Hak-Yun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.78-82
    • /
    • 2011
  • In this paper, magnetic field compensation system with an open architecture and can be installed indoors is designed and measured by fabricated. To verify the shielding effectiveness, two rectangular helmholtz coils with 3-axis are fabricated to generate magnetic field and measured magnetic field inside compensation coil for 1~60[Hz], According to measurements, AC shielding effectiveness of compensation system is 96[%] of 1[Hz], 95[%] of 30[Hz] and 90[%] of 60[Hz]. The performance of system therefore can be used as the magnetically shielded room for medical and industrial field.

Performance Evaluation of Low Frequency Magnetic Field Shielding by Eddy-Current (와전류에 의한 저주파 자기장 차폐 성능 평가)

  • Choi, Hak-Yun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.124-128
    • /
    • 2010
  • In this paper, the shielding effectiveness of aluminum shielded room with using eddy-current is calculated and measured after fabricated. The size and thickness of shielded room are decided as $2.4{\times}2.4{\times}2.4[m^3]$ and 12[mm] after AC shielding characteristics by eddy-current of conductive materials is analyzed. To verify the shielding effectiveness, a rectangular helmholtz coil is fabricated to generate magnetic field of 1.37[${\mu}T$] and measured magnetic field inside shielding room for 0.01~10[Hz]. According to calculations and measurements, AC Shielding effectiveness by eddy-current in aluminum is very small for 0.01~2[Hz] and 5 times to 11 times for 5~10[Hz].

Calculation and Mitigation of Magnetic Field Produced by Straight Line-Conductor with Finite Length (유한장 직선도체에 의한 자계의 계산 및 감소대책)

  • Kang, Dae-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.57-67
    • /
    • 2011
  • Purpose of this study is to find the mitigation method of magnetic field by finite length multi-conductors such as indoor distribution lines and to be applicable to design of the distribution lines. For this purpose, exact formula about the components $B_x$, $B_y$, $B_z$ of magnetic field need in case of straight line-conductor with finite length forward any direction. In this study simple formula of the components were deduced and by using these formula magnetic fields for various models of line-configurations were calculated. And also a calculation method of induced currents in conductive shield was presented and using this method, programing of calculation is relatively easy and calculation time is short. The magnetic field after cancellation by these induced currents was calculated. All of calculations were performed by Matlab 7.0 programs. Through the calculation results it could be obtained followings for the mitigation of magnetic fields. The separation between conductors ought to be smaller than smaller as possible. In case of 3-phase, delta configuration is more effective than flat configuration. In case of 3-phase, unbalanced currents ought to be reduced as possible.. In case of more than two circuits of 3-phase, adequate locations of each phase-conductor such as rotating configuration of 3-phase conductors are more effective. The magnetic shielding effect of the conductive shielding sheet is very high.

Design of MSR for Magnetic Field Shielding of Low Frequency (저주파 자기장 차폐를 위한 자기차폐실 설계)

  • Choi, Hak-Yun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.154-159
    • /
    • 2010
  • In this paper, the magnetically shielded room for low magnetic field shielding is designed and measured by fabricated. The size of magnetically shielded room was 3.0[m](W)$\times$3.0[m](L)$\times$3.0[m](H) to enter the industrial measuring instruments and analyzed DC and AC shielding characteristics of magnetic materials with a high permeability and AC shielding characteristics by eddy current of conductive materials. As a results, shielded room dimensions were obtained. To verify the analysis results, magnetically shielded room is fabricated and the calculated results are compared with the measured results. The Measured results show good agreement with calculated results. According to measurements, 5 times of 0.1[Hz] and 86 times of 60[Hz] is achieved at low frequency. The fabricated shielding room can be used as the magnetically shielding room for low magnetic field shielding.

Magnetic Field Distribution of Power Line Using Amorphous Wire (아몰포스선을 이용한 전력선의 자계분포)

  • Moriyama, T.;Cho, M.W.;Hikita, M.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.609-612
    • /
    • 2001
  • To investigate the magnetic field distribution of power line, we used amorphous wire sensor. And we discuss extremely low frequency magnetic field distribution dependent upon arrangement of power line and shielding pipe made from iron or alumimum materials by both measurement and FEM(Finite Element Method) analysis. Appling current of single phase 60 [Hz] 15 [A] is supplied to copper wire coated enamel resign. As the results, we confirmed that linear characteristics of amorphous wire sensor is very excellent and measurement value agrees with FEM calculation. Magnetic field distribution due to shielding materials is changed by permeability and conductivity.

  • PDF

The Effect of Crystal and Non-Crystal Structures on Shielding Material Behaviour Under A.C. Field Excitations

  • Rahman, Nazaruddin Abd;Mahadi, Wan Nor Liza
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.9-13
    • /
    • 2013
  • Shielding effects in conductive and magnetic materials were investigated as a function of properties, thickness and diameter. In this work, evaluations on passive conductive and magnetic shield specimens were achieved through experimentation set-up using 50 Hz single and three phase induction field sources. Analysis on material microstructure properties and characteristics of shielding specimens were performed with the use of vibrating sample magnetometer (VSM) and field emission scanning electron microscopy (FESEM). An induction field at $136{\mu}T$ of single phase system and $50{\mu}T$ of three phase systems were observed to the shield specimens with the thickness ranged of 0.2 mm to 0.4 mm. It is observed that shield specimen efficiency becomes inversely proportionate to the increment of induction fields. The decrease was attributed to the surface structure texture which relates to the crystallization and non-crystallization geometrical effects.

Development of an Active Magnetic Noise Shielding System for a Permanent Magnet Based MRI (영구자석 MRI를 위한 능동형 자기 잡음 차폐시스템 기술 개발)

  • 이수열;전인곤;이항노;이정한
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.181-188
    • /
    • 2003
  • In this paper, we introduce a magnetic noise shielding method to reduce the noise effects in permanent magnet based MRI systems. Through FEM electromagnetic analyses, we have shown that the magnetic noise component parallel to the main magnetic field is the major component that makes various artifacts in the images obtained with a permanent magnet based MRI. Based on the FEM analyses, we have developed an active magnetic noise shielding system composed of a magnetic field sensor, compensation coils, and a coil driving system. The shielding system has shown a noise rejection ratio of about 30dB at the frequency below several Hz. We have experimentally verified that the shielding system greatly improves the image quality in a 0.3 Tesla MRI system.

Sheld of AC magnetic filed using High Temperature Superconductor (고온초전도체에 의한 교류자장 차폐효과)

  • Kim, Sung-Hoon;Kim, Woo-Seok;Hahn, Song-Yop;Choi, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.932-934
    • /
    • 2002
  • In this paper, we proposed a method to shield perpendicular magnetic fields in high Tc superconductor(HTS) tape of a shell-type HTS transformer with double pancake windings. A diamagnetism of characteristics of superconductor is used to shield magnetic field. For a shielding experiment, a proper shielding model is chosen, and several kinds of HTS are used such as a monofilament HTS tape, two kinds of multifilament HTS tapes and YBCO film disk. The effect of shielding for the perpendicular magnetic field is measured with HTSs for shielding and their utility for shielding is proved.

  • PDF

Improvement of Electromagnetic Shielding Structure for Reduction of the Leakage Magnetic Field in WPT System (WPT 시스템의 누설자계 감소를 위한 전자파 차폐구조 개선)

  • Kim, Jongchan;Lee, Seungwoo;Kang, Byeong-Nam;Hong, Ic-Pyo;Cho, In-Kui;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • In this paper, we propose an improved magnetic field shielding structure to reducing the magnetic field generated in the wireless power transfer system operating at a low frequency band. The proposed structure consists of the magnetic material and the conductive material, magnetic field cancelling effect for power transfer is minimized while improving the leakage magnetic field cancelling effect by optimizing the various design parameters in the proposed structure. We analyzed and verified the efficiency of the wireless power transfer system and the reduction effect of the leakage magnetic field through computer simulation and measurement. Analysis results show that power transfer efficiency of the wireless power transfer system utilizing the proposed structure is 77 %, which is maintained at the conventional power transfer efficiency. In addition, compared with the structure maintaining high power transfer efficiency, leakage magnetic field strength is reduced to 29~37 % at the nearest point.