• Title/Summary/Keyword: Magnetic field measuring device

Search Result 30, Processing Time 0.022 seconds

A Basic Study on the Measurement Induced Voltages due to Lightning Discharges (뇌방전에 의한 유도전압의 측정에 대한 기초적 연구)

  • Lee, Bok-Hee;Cho, Sung-Chul;Eom, Ju-Hong;Lee, Woo-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.559-564
    • /
    • 2004
  • This paper deals with the device for measuring the time-varying magnetic fields and induced voltages caused by lightning discharges. The two magnetic field measuring systems were designed and made. One consists of the loop-type magnetic field sensor with the active integrator operated by a differential amplifier. The other consists of the loop-type magnetic field sensor and Labview software. The loop-type magnetic field sensor detects the time derivative of the magnetic field being measured, and the signal detected is integrated by the Labview software. As a consequence, from the calibration experiments, the frequency bandwidth of the full measuring system ranges from 400 [Hz] to 1 (MHz) and the response sensitivity are 0.98 (mV/nT) and 22 (mV/nT) for the magnetic field sensor of 2 turns and 6 turns, respectively. Also, the results obtained by the two measuring devices well agreed with each other.

  • PDF

Distributions of the Magnetic Flux Density Near Down-Conductors Due to Various Impulse Currents (임펄스전류에 의한 인하도선 주위에서 자속밀도의 분포)

  • 이복희;장근철;이수봉;강성만;이승칠
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.109-115
    • /
    • 2004
  • This paper deals with the behaviors of magnetic flux density near down-conductors by lightning currents. The background on the principle of magnetic flux density measurements using the RL self-integrating magnetic field sensor was described. The magnetic flux density measuring device consisting of RL self-integrating magnetic field sensor and differential amplifier was designed and fabricated. The frequency bandwidth of the magnetic flux density measuring system ranges from 200 Hz to 300 KHz and the response sensitivity was 0.126 $\mu$T/㎷ The distributions of the magnetic flux density near down-conductors due to impulse currents with various rise times were analyzed as a parameter of the bonding conditions and materials of conductor and wiring conduits. The magnetic flux density due to impulse currents was inversely proportional to the distance between the down-conductor and measuring point. The amplitude of the magnetic flux density for PVC Pipe with down-conductor was 72 $\mu$T/㎷ at the distance of 1m and was higher than for steel conduits and coaxial cable. Finally the magnetic flux density is increased with increasing the di/dt it and oscillation frequency of lightning currents in this experimental ranges.

Magnetic Field Measuring System by using Loop-type Sensor (루우프형 센서를 이용한 자장측정계)

  • Lee, Bok-Hee;Kil, Gyung-Suk;Park, Dong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.14-21
    • /
    • 1995
  • This paper deals with the active magnetic field measuring system which can measure the time-varying magnetic fields generated by power installations and lightning discharges. The magnetic field measuring system consists of the loop-type magnetic field sensor and the active integrator operated by a differential amplifier. The theoretical principle and design rule of the time-varying magnetic field measuring device and the calibration apparatus are introduced. From the calibration experiments, the frequency bandwidth of the full measuring system ranges from 270 Hz to about 2.3 MHz and the response sensitivity for magentic field strength is 128 $mV/{\mu}T$, respectively, and the calculated B-field values in the center of the loop-type sensor versus the the applied current made with a region of ${\pm}3\;%$error. The actual survey experiments by using lightning impulse current and oscillating impulse current were performed, the results of comparision between the input current waveforms and the magnetic field waveforms are a good agreement with each others and their deviations are less than 0.5 %.

  • PDF

Ground Detection Method for Removement of Earth Field for Magnetic Guidance System (자계안내시스템용 지자계 제거를 위한 Ground 검출법)

  • Im, Dae-Yeong;Jung, Young-Yoon;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.581-586
    • /
    • 2006
  • In this paper, describes ground detection method for removal earth field of magnet guidance system Magnetic guidance system is magnetic markers are installed just under the surface of roadway pavement and the magnetic fields generated these markers are detected by magnetic field sensor mounted of vehicles. vehicle is know lot lateral distance using magnetic field. But sensor is together measuring the magnetic field and earth field. It is operate error. Thus in this paper, proposed new method removing earth field or development experiment device via show the for practical and excellence.

A Study on Magnetic Cure System Depending on Dominant Direction of Meridian using Heating Diagnosis Method

  • Kim, Byoung-Hwa;Lee, Hie-Soung;Lee, Woo-Cheol;Han, Gueon-Sang;Won, You-Seub;Sagong, Seok-Jin;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1776-1779
    • /
    • 2002
  • In this paper, we measured the heating time on the key measuring point of the meridian of the human body's left and right by using heating machine. Then, based on the fuzzy theory, this study diagnosed the each meridian's strength and weakness, After that, both the strengthening and weakening stimulus of magnetic field was applied to the dominant direction to find out how the degree of strength and weakness of the meridian changed. Ultimately, the magnetic therapy that can stimulate the magnetic field at the time of diagnosis and thereby balancing the interactive of a five system has been materialized. For the stimulation of magnetic field, a stimulating device which can change the direction and time on a specific part of the key measuring points has been developed and used. The therapeutic method is as follows. first, the strength and weakness of the meridian has been determined. Second, both the extremely weak meridian of Yin(Shade) and Yang(Shine), and the extremely strong meridian of Yin and Yang were adjusted by applying appropriate ascending and descending stimuli respectively.

  • PDF

Estimation of MCG parameters for the diagnosis of heart diseases (심질환 진단을 위한 심자도 파라메터의 추출)

  • Jeon, Chang-Ik;Huh, Young;Kim, Ki-Uk;Han, Byung-Hee;Jin, Seung-Oh;Chang, Won-Suk;Lee, Hyun-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.549-552
    • /
    • 2003
  • The electrical current generated by heart creates not only electric potential but also a magnetic field. We have observed electrophysiological phenomena of the heart by measuring tangential components of magnetocardiogram(MCG) using 61 channel superconducting quantum interference device(SQUD) system. In this paper, we developed a new analysis method, which is based on the theory of electromagnetic field. We show some differences of the current direction between the normal MCG and the abnormal(ischemic heart disease) MCG.

  • PDF

Profiles of electric and magnetic fields in the vicinity of 22.9[kV] Distribution Line (22.9[kV] 배전선로 주변의 전장과 자장의 분포)

  • Lee, Bok-H.;Gil, Hyoung-J.;Ahn, Chang-H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1653-1655
    • /
    • 1998
  • In this paper, measurement and analysis of ELF electric and magnetic fields in the vicinity of 22.9[kV] distribution line have been performed. The height of measuring point from the earth's surface was 1[m], and the distance between the device and the operator was more than 3[m]. The experiments have been carried out by lateral profile, and we have made use of FIELDS program for the sake of comparision the experimental data with the theoretical value. Electric and magnetic fields intensity were strong under a distribution line, and were inversely proportional to lateral distance. The profiles of electric field were M shape and those of magnetic field were $\cap$ shape. Electric and magnetic fields intensity were increased with increasing the measurement height.

  • PDF

Development of the Measuring Device of Muzzle Velocity using Magnetic Field Gradient Sensor (자계 차분형 센서를 이용한 초소형/고정밀 탄속 측정장치 개발)

  • 채제욱;김종천;최의중;이영신
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.22-28
    • /
    • 2003
  • In the conventional weapon system, such as gun and small arms, it Is a general trend that for maximization of its performance and enhancement of its effectiveness, the firing control system(FCS) is developed and applied with the guns and small arms in the world. The FCS of the small arms for infantry man is composed of a few of sensors for acquisition of input data of FCS, such as range measurement, position sensing of weapon, temperature, etc., computer, displayer and power pack, and also the air burst munition is developed in parallel for the maximization of FCS's effectiveness. Since the flight time setting fuze for the air burst munition is adapted for next me, the measuring device of the muzzle velocity is needed to overcome the variation of muzzle velocity due to producing procedures and the differences of the using temperatures and so maintain the burst position accuracy This paper contained the technical information on the development of the measuring device of muzzle velocity, which designed in compact & light weight configuration with reliability and accuracy.