• Title/Summary/Keyword: Magnetic equivalent circuit

Search Result 302, Processing Time 0.027 seconds

Characteristics calculation on radio frequency power transfer in a planar inductively coupled plasma source (평면형 유도결합 플라즈마 장치에서의 RF 전력 전달 특성 계산)

  • 이정순;정태훈
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.368-375
    • /
    • 1999
  • The Maxwell equation and the transformer equivalent-circuit model are applied to a radio frequency planar inductively coupled plasma. The spatial distribution of the vector potential, the magnetic field, and the electric field are obtained analytically. As a result, the plasma current, the mutual inductance between the coil and the plasma, and the self inductance of plasma are found to increase with increasing skin depth. The spatial distribution of absorbed power has maximum where the antenna coil exists, and has a similar profile to that of the induced electric field. The power transfer efficiency is found to increase with increasing gas pressure before a saturation around p+ 20mTorr, while it shows an increase with the plasma density before a slight decrease around a density of $5\times10^{11}/\textrm{cm}^3$.

  • PDF

Design of the Linear Propulsion System of a High-Speed Dynamic Tester for Catenary-Current Collection (전차선로-집전계 주행시험기용 리니어 추진시스템 설계)

  • Kwon, Sam-Young;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.63-70
    • /
    • 2006
  • This paper presents design of the linear propulsion system of a high-speed (200km/h) dynamic tester for catenary-current collection. Among various propulsion systems, a permanent magnet linear synchronous motor is chosen for need of high acceleration force. The design is performed by the equivalent magnetic circuit method and verified by the finite element method. In addition, analysis of the main effects of various design variables for performance of the propulsion system has been done by using simulation-based DOE method.

A Study of Double Type Transverse Flux Linear Motor for Improvement of Attraction force and Power Density (흡인력 저감과 추력밀도 향상을 위한 Double Type 횡자속 전동기에 대한 연구)

  • Hong Jung-Pyo;Chang Jung-Hwan;Kang Do-Hyun;Kim Young-Jung;Lee Ji-Young
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.120-126
    • /
    • 2005
  • This paper deals with a Double-type Transverse Flux Linear Motor which can be applied to high power system. This type can reduce overall system volume because it has a double flux path, and less number of phases and turns comparing with prototype for one phase. This machine is based on permanent magnet excitation, and the pole shape is designed to reduce attraction force between stator and mover poles. In the paper, the basic configuration of double type is introduced first, and the principle of movement is explained. After performing the characteristic analysis by 3-dimensional equivalent magnetic circuit network, the results are discussed.

Steady-State Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor (단상 영구자석형 유도동기기의 정상상태 특성해석)

  • Kang, Gyu-Hong;Nam, Hyuk;Hong, Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.53-60
    • /
    • 2003
  • This paper deals with steady-state analysis of a single-phase line-start permanent magnet synchronous motor. In order to analyze the steady-state characteristics, the asymmetric single-phase line-start synchronous motor is converted to the symmetric two-phase synchronous motor, that is, the asymmetric magnetic field is separated from the positive and the negative symmetric components using symmetrical-component theory. The analysis method of the synchronous motor on the d-q axis coordinates is used for the positive component and the equivalent circuit of the induction motor is applied for the negative component analysis. Moreover, d-q axis inductance considering current phase angle is applied to positive component analysis for precise characteristic analysis. In order to validate the proposed analysis method, the analysis results are compared with the experimental results.

Analysis on Arrangements of Winding Design of Single-Phase Capacitor Motor Used to Two Voltages (양전원전압병용단상전동기의 권선설계의 조정에 관한 고찰)

  • 황영문;이일천
    • 전기의세계
    • /
    • v.28 no.3
    • /
    • pp.65-71
    • /
    • 1979
  • This paper examines the reasonable winding arrangements of designing tapped winding capacitor motors to used in two voltage sources. The approach of this paper is based partly on a hybrid equivalent circuit of a single phase induction motor, together with an experimental method by sample machines. In results, the distribution of etra and main windings ia the stator is to be balanced in each magnetic pole and in order to have the same torque output characteristics for two different voltage sources, the extra/main winding ratio is to be adjusted. Experimental results obtaired with sample macines of about 1/8 hp output rating are used with analysis to predict the favorable winding conditions.

  • PDF

Development of Optical Fiber Displacement Sensor for Non-contact Vibration Measurement in the High Speed Rotation System (고속회전체의 진동 측정용 비접촉 광섬유 변위센서 개발)

  • Lee, Kee-Seok;Hong, Jun-Hee;Shin, Woo-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.50-56
    • /
    • 2005
  • This paper is described a development of an optical fiber displacement sensor. The optical fiber sensor using an intensity modulated measures the displacement between target and sensor. A prototype sensor is composed of a transmitting part, a receiving part and a signal processing circuit. The experiment was conducted not only the sensor performance but also factors that affect intensity. The main performance of this sensor is resolution of 0.37um and the non-linearity $0.7\%$ FS and the dynamic bandwidth of about 6.3kHz. As a result of rotation test, the prototype sensor showed an equivalent performance to a commercial eddy current sensor.

Optimal Design of Interior Permanent Magnet Synchronous Motors Using Genetic Algorithm (유전 알고리즘을 이용한 매입형 영구자석 동기전동기의 최적 설계)

  • 조동혁;심동준;천장성;정현교
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.4
    • /
    • pp.258-263
    • /
    • 1996
  • Air gap flux density and d, q axis inductances of the Interior Permanent Magnet Synchronous Motor obtained by equivalent magnetic circuit method are compensated using results from Finite Element Method. For optimal design, the efficiency of the motor is taken as the objective function, and Genetic Algorithm finds the value of design parameters which maximize the objective function. The result of optimal designed motor is examined by comparison with proto-type motor.

  • PDF

A Study of Basic Design for the Traction Motor (Traction Motor 설계에 관한 연구)

  • Kim, Won-Ho;Bae, Jae-Nam;Jang, Ik-Sang;Lee, Ju
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1395-1401
    • /
    • 2010
  • A paradigm shift in driving system of transportation vehicle from engine to electric motor is required as the problems on air pollution and drain of petroleum resource are on the rize. Moreover while it is possible to control the motor with variable frequency driver, the application of motor in various kinds of vehicles is spread rapidly. In the paper, the effective design method of IPMSM for EV and HEV by using equivalent magnetic circuit and finite element method (FEM) is suggested. First of all, load conditions of the application are calculated. And basic design process of IPMSM is proposed with two design point. Finally, in order to verify the proposed design process, it was compared with the basic design parameter and the FEM analysis results.

  • PDF

Comparative Study of Current Limiting Characteristics for Hybrid Type and Flux-Lock Type SFCLs

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.222-225
    • /
    • 2007
  • In this paper, we compared the current limiting characteristics of both the hybrid type and the flux-lock type superconducting fault current limiters(SFCLs), which have a magnetic coupling structure between a primary winding and several secondary windings. The limiting impedances of two SFCLs were derived from each equivalent circuit considering the design parameters of SFCL such as the self-inductance of secondary winding and the resistance of $high-T_C$ superconducting(HTSC) element. Through the comparison for the limiting impedances of two SFCLs considering the dependence of the HTSC element's resistance on the applying voltage into the SFCL, the hybrid type SFCL was confirmed to have larger limiting impedance with smaller resistance of HTSC element than the flux-lock type SFCL. It was expected from the analysis that the hybrid type SFCL was more advantageous than the flux-lock type SFCL from the viewpoint of the fault current limiting level.

Design and Analysis of Characteristics of IPM type BLDC Motor for Low Voltage, High Current (저전압 대전류용 IPM type BLDC 전동기 설계 및 특성해석)

  • Yun, Keun-Young;Rhyu, Se-Hyun;Yang, Byoung-Yull;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.77-79
    • /
    • 2004
  • This paper presents a design and characteristics analysis of interior permanent magnet (IPM) type BLDC motor for electric vehicle. In order to design of IPM type BLDC motor, surface mounted permanent magnet(SPM) type BLDC motor is used as the initial design model. According to the size of permanent magnet, the steady state characteristics is analysized by equivalent magnetic circuit method. The characteristics analysis results of the designed motor is compared with the experimental results.

  • PDF