• 제목/요약/키워드: Magnetic contact force

검색결과 122건 처리시간 0.023초

The Influence of Magnetization Pattern on the Performance of Permanent Magnet Eddy Current Couplings and Brakes

  • Cha, Hyun-Rok;Cho, Han-Wook;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.379-384
    • /
    • 2008
  • This paper examines permanent magnet eddy current couplings and brakes. Specifically, the effect of permanent magnet magnetization patterns on the magnetic field and force production is investigated. The eddy current couplings and brakes employ high energy-product neodymium-iron-boron (NdFeB) permanent magnets that act on iron-backed copper drums to provide torque transfer from motor to load without mechanical contact. A 2-dimensional finite element modeling is performed to predict the electromagnetic behavior and the torque-speed characteristics of permanent magnet type eddy current couplings and brakes under constant speed operation.

고속 디버링 머신의 개발에 관한 연구 (A Study on Development of High Speed Deburring Machine)

  • 구자함;김인환;허남수
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.116-121
    • /
    • 2013
  • A high speed deburring machine was developed based on the analysis of magnetic contact force, forced vibration, stiffness and deformation of the structure. After 3 dimensional CATIA modelling, the stiffness and the deformation properties of the deburring machine in static and dynamic condition using finite element method were analyzed. Both static and dynamic simulation results showed that designed high speed deburring machine was well satisfied the stability properties at the operating condition. we have performance test program for the real system to evaluate the simulation results.

자기부상철도 성능 및 안전 관련법 검토 (A Review of Performance and Safety Law for Maglev Vehicle)

  • 장석각;이영훈;변윤섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1140-1141
    • /
    • 2006
  • Maglev is a non-contact traffic system in which cars are supported by magnetic force instead of wheels. This is a ground-breaking traffic system providing superior environmental friendliness and cost efficiency due to the minimal noise and vibration offered by its non-contacting nature. We study the present specification and performance of the low speed urban maglev system in Korea and other countries. After set up the test line, to success the "Commercialization of Korean Urban Maglev System" project, we establish proper requirement of maglev system in Korean environment on base of "Daejeon National Science Museum Maglev Establish Project".

  • PDF

선형 유도기 구동 방식 공기 베어링 스테이지에 관한 연구 (Study on the Air-bearing Stage Driven by Linear Induction Motors)

  • 정광석;심기본
    • 한국정밀공학회지
    • /
    • 제27권6호
    • /
    • pp.39-46
    • /
    • 2010
  • Linear induction motor is adopted as an actuator of the planar stage. An inherently poor characteristic at zero or ultra-low speed zone of the induction motor is remarkably improved due to a recent development of power electronic semiconductor technology and a spatial vector control theory. At present, a servo response speed of the induction motor reaches 90 percent of one of PM synchronous or BLDC motor. Specially, as a secondary of the induction motor can be constructed using uniform conducting sheets, there is no periodic force ripple as in PM motors. So, the induction motor can be superior to another driving means under a certain condition. This paper discusses the overall development procedure of non-contact planar stage with a big workspace using linear induction motors.

하드 디스크 드라이브용 패드 슬라이더의 트라이볼로지 특성에 관한 실험적 연구 (Experimental Analysis of Tribological Performances of Padder Slider in HDD)

  • 홍수열;좌성훈;고정석;이형재
    • Tribology and Lubricants
    • /
    • 제17권4호
    • /
    • pp.312-320
    • /
    • 2001
  • In magnetic hard disk drives, higher areal recording density requires reduction of head-disk spacing. To overcome the increase of stiction associated with reduction of head-disk spacing, a padder slider, which adds pads to slider's air bearing surface, can be one of the practical solution for sub 20 nm flying height, and even for near contact recording. This study investigated the tribological characteristics of a padder slider. A padder slider took off slowly but showed less friction force than a normal slider. The hot/dry CSS test and drag test indicated that pad wear of a padder slider was negligible. The tribological performance of disk is an important factor to be considered. In particular, less carbon overcoat layer of the disk will result in higher stiction and wear in slider/disk interface. In conclusion, a padder slider shows encouraging tribological performances for practical use in HDD.

Micro/Nanotribology and Its Applications

  • Bhushan, Bharat
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.128-135
    • /
    • 1995
  • Atomic force microscopy/friction force microscopy (AFM/FFM) techniques are increasingly used for tribological studies of engineering surfaces at scales, ranging from atomic and molecular to microscales. These techniques have been used to study surface roughness, adhesion, friction, scratching/wear, indentation, detection of material transfer, and boundary lubrication and for nanofabrication/nanomachining purposes. Micro/nanotribological studies of single-crystal silicon, natural diamond, magnetic media (magnetic tapes and disks) and magnetic heads have been conducted. Commonly measured roughness parameters are found to be scale dependent, requiring the need of scale-independent fractal parameters to characterize surface roughness. Measurements of atomic-scale friction of a freshly-cleaved highly-oriented pyrolytic graphite exhibited the same periodicity as that of corresponding topography. However, the peaks in friction and those in corresponding topography were displaced relative to each other. Variations in atomic-scale friction and the observed displacement has been explained by the variations in interatomic forces in the normal and lateral directions. Local variation in microscale friction is found to correspond to the local slope suggesting that a ratchet mechanism is responsible for this variation. Directionality in the friction is observed on both micro- and macro scales which results from the surface preparation and anisotropy in surface roughness. Microscale friction is generally found to be smaller than the macrofriction as there is less ploughing contribution in microscale measurements. Microscale friction is load dependent and friction values increase with an increase in the normal load approaching to the macrofriction at contact stresses higher than the hardness of the softer material. Wear rate for single-crystal silicon is approximately constant for various loads and test durations. However, for magnetic disks with a multilayered thin-film structure, the wear of the diamond like carbon overcoat is catastrophic. Breakdown of thin films can be detected with AFM. Evolution of the wear has also been studied using AFM. Wear is found to be initiated at nono scratches. AFM has been modified to obtain load-displacement curves and for nanoindentation hardness measurements with depth of indentation as low as 1 mm. Scratching and indentation on nanoscales are the powerful ways to screen for adhesion and resistance to deformation of ultrathin fdms. Detection of material transfer on a nanoscale is possible with AFM. Boundary lubrication studies and measurement of lubricant-film thichness with a lateral resolution on a nanoscale have been conducted using AFM. Self-assembled monolyers and chemically-bonded lubricant films with a mobile fraction are superior in wear resistance. Finally, AFM has also shown to be useful for nanofabrication/nanomachining. Friction and wear on micro-and nanoscales have been found to be generally smaller compared to that at macroscales. Therefore, micro/nanotribological studies may help def'me the regimes for ultra-low friction and near zero wear.

Optimization of outer core to reduce end effect of annular linear induction electromagnetic pump in prototype Generation-IV sodium-cooled fast reactor

  • Kwak, Jaesik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1380-1385
    • /
    • 2020
  • An annular linear induction electromagnetic pump (ALIP) which has a developed pressure of 0.76 bar and a flow rate of 100 L/min is designed to analysis end effect which is main problem to use ALIP in thermohydraulic system of the prototype generation-IV sodium-cooled fast reactor (PGSFR). Because there is no moving part which is directly in contact with the liquid, such as the impeller of a mechanical pump, an ALIP is one of the best options for transporting sodium, considering the high temperature and reactivity of liquid sodium. For the analysis of an ALIP, some of the most important characteristics are the electromagnetic properties such as the magnetic field, current density, and the Lorentz force. These electromagnetic properties not only affect the performance of an ALIP, but they additionally influence the end effect. The end effect is caused by distortion to the electromagnetic field at both ends of an ALIP, influencing both the flow stability and developed pressure. The electromagnetic field distribution in an ALIP is analyzed in this study by solving Maxwell's equations and using numerical analysis.

컴퓨터 하드디스크 드라이브의 레이저 텍스쳐 디스크와 미케니칼 텍스쳐 디스크의 마모거동에 관한 연구 (A Tribological Investigation on Laser Textured Disk and Mechanically Textured Disk of Computer Hard Disk Drive)

  • 김우석;김도형;황평;김장교
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.106-114
    • /
    • 1998
  • Tribological investigation of ultra thin film magnetic storage disks which have two different kinds of start/stop zone of laser textured bump disk and mechanically textured disk for before CSS test and after CSS test. To measure surface roughness, height reduction before/after CSS test and obtain accurate topographies, AFM(Atomic Force Microscope) which is most powerful recently has been used. The result of statistical analysis showed that both laser textured bump height and mechanically textured zone height have been reduced about 4~7nm after 15000 cycle CSS test. Using commercial Nano-Indenter, ramping load scratch test has been performed to investigate friction characteristic for laser textured zone and mechanically textured zone before/after CSS test.

  • PDF

리드 스위치 센서를 이용한 원격 검침용 상수도 계량기에서 채터링 오차 감소 방안 연구 (Reduction of Chattering Error of Reed Switch Sensor for Remote Measurement of Water Flow Meter)

  • ;김희식
    • 전자공학회논문지SC
    • /
    • 제44권4호통권316호
    • /
    • pp.42-47
    • /
    • 2007
  • 상수도 원격 검침에서는 리드 스위치의 채터링 오차를 감소시키기 위한 센서 연구 및 개선이 필요하다. 센서의 동작은 전기적 펄스를 발생시키기 위한 영구 자석 주각의 접근에 의한 기계적 접촉스위치처럼 나타낼 수 있다. 대부분 회전 또는 전달 이동을 잡기 위해 사용되고 수류 측정 장치에 적용하기 위해서는 높은 신뢰성이 필수이다. 동작 형태를 간단히 설명하게 되면 미터기 작동 모터 끝에 달려있는 작은 자석이 미터기 회전에 의해 리드 스위치 내부에 있는 두 개의 스프링과 기계적 접촉 형식으로 반복적으로 떨어지게 된다. 즉 수류량에 따라 펄스의 수가 증가하는 것이다. 이렇게 측정된 값은 무선 이동 통신을 통해 서버로 전달되게 된다. 문제는 자석과 리드 스위치가 만나는 지점에서 스위치가 멈추게 되면 떨리면서 펄스가 잘못 올라가는 오차가 생기는 것이다. 이러한 오차를 감소시키기 위해 보통 소프트웨어적인 방법을 사용한다. 필터 알고리듬을 사용하는것과 통계적인 보정방법을 사용하는 것이 그러한 예이다. 하지만 그러한 방법보다는 하드웨어적으로 문제를 해결하는 것이 오차를 줄일 수 있는 더 직접적인 방법이다. 본 논문에서는 기계적인 이력현상의 특성을 이용하여 리프 스프링 구조의 변화로 오차를 감소시키는 연구를 수행하였다.

Development and validation of a computational multibody model of the elbow joint

  • Rahman, Munsur;Cil, Akin;Johnson, Michael;Lu, Yunkai;Guess, Trent M.
    • Advances in biomechanics and applications
    • /
    • 제1권3호
    • /
    • pp.169-185
    • /
    • 2014
  • Computational multibody models of the elbow can provide a versatile tool to study joint mechanics, cartilage loading, ligament function and the effects of joint trauma and orthopaedic repair. An efficiently developed computational model can assist surgeons and other investigators in the design and evaluation of treatments for elbow injuries, and contribute to improvements in patient care. The purpose of this study was to develop an anatomically correct elbow joint model and validate the model against experimental data. The elbow model was constrained by multiple bundles of non-linear ligaments, three-dimensional deformable contacts between articulating geometries, and applied external loads. The developed anatomical computational models of the joint can then be incorporated into neuro-musculoskeletal models within a multibody framework. In the approach presented here, volume images of two cadaver elbows were generated by computed tomography (CT) and one elbow by magnetic resonance imaging (MRI) to construct the three-dimensional bone geometries for the model. The ligaments and triceps tendon were represented with non-linear spring-damper elements as a function of stiffness, ligament length and ligament zero-load length. Articular cartilage was represented as uniform thickness solids that allowed prediction of compliant contact forces. As a final step, the subject specific model was validated by comparing predicted kinematics and triceps tendon forces to experimentally obtained data of the identically loaded cadaver elbow. The maximum root mean square (RMS) error between the predicted and measured kinematics during the complete testing cycle was 4.9 mm medial-lateral translational of the radius relative to the humerus (for Specimen 2 in this study) and 5.30 internal-external rotation of the radius relative to the humerus (for Specimen 3 in this study). The maximum RMS error for triceps tendon force was 7.6 N (for Specimen 3).