• 제목/요약/키워드: Magnetic chain structure

검색결과 35건 처리시간 0.022초

H-형태 양친매성 펜타블록 공중합체의 화학효소적 합성과 자기회합거동 평가 (Chemoenzymatic Synthesis of H-shaped Amphiphilic Pentablock Copolymer and Its Self-assembly Behavior)

  • Chen, Peng;Li, Ya-Peng;Li, Cai-Jin;Meng, Xin-Lei;Zhang, Bao;Zhu, Ming;Liu, Yan-Jing;Wang, Jing-Yuan
    • 폴리머
    • /
    • 제37권3호
    • /
    • pp.332-341
    • /
    • 2013
  • H-shaped amphiphilic pentablock copolymers $(PSt)_2-b-PCL-b-PEO-b-PCL-b-(PSt)_2$ was synthesized via chemoenzymatic method by combining enzyme-catalyzed ring-opening polymerization (eROP) of ${\varepsilon}$-caprolactone (${\varepsilon}$-CL) and atom transfer radical polymerization (ATRP) of styrene. By this process, we obtained copolymers with controlled molecular weight and low polydispersity. The structure and composition of the obtained copolymers were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and infrared spectroscopy analysis (IR). The crystallization behavior of the copolymers was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The crystallization behavior of the H-shaped block copolymers demonstrated a PCL dominate crystallization. The self-assembly behavior of the copolymers was investigated in aqueous media. The hydrodynamic diameters of the copolymer micelles in aqueous solution were measured by dynamic light scattering (DLS). The morphology of the copolymer micelles was observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The hydrodynamic diameters of spherical micelles declined gradually with the increase of the hydrophobic chain lengths of the copolymers. The critical micelle concentration (CMC) values were determined from fluorescence emission, and it was found that the CMCs decreased with an increase of PSt hydrophobic block lengths.

측두하악 관절원판 후조직의 MMP(matrix metalloproteinase)-1과 MMP-2 mRNA의 발현 (EXPRESSION OF MATRIX METALLOPROTEINASE-1 AND -2 MRNA IN RETRODISCAL TISSUE OF THE TEMPOROMANDIBULAR JOINT)

  • 허종기;박광균;최민아;김형곤
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제29권4호
    • /
    • pp.212-218
    • /
    • 2003
  • Matrix metalloproteinases (MMPs) play an important role in the normal morphogenesis, maintenance, and repair of matrix and also have important functions in pathologic conditions characterized by excessive degradation of extracellular matrix, such as rheumatoid arthritis, osteoarthritis, periodontitis and in tumor invasion and metastasis. In this study, expression of MMP-1 and -2 mRNA in retrodiscal tissue of the temporomandibular joint (TMJ) was examined and compared with magnetic resonance imaging (MRI) and surgical findings. MMP mRNAs in the retrodiscal tissue samples were detected by reverse transcription - polymerase chain reaction. TMJ internal derangement (ID) was categorized as normal disc position, disc displacement with reduction, early stage of disc displacement without reduction (DDsR) and late stage of DDsR. TMJ osteoarthrosis (OA) was classified with normal, mild and advanced OA. The amount of synovial fluid collection was divided into not detected, small, large and extremely large amount on MR T2-weighted imaging. Perforation and adhesion were examined during open surgery of the TMJ. Six out of 37 samples were excluded because of little amount of extracted total mRNA. MMP-2 mRNA was detected whole joints, and so the MMP-2 mRNA seems to be expressed normally in retrodiscal tissue. However, MMP-1 mRNA was expressed in 8 of 31 joints. Frequencies of MMP-1 mRNA expression according to the TMJ IDs, amount of synovial fluid and surgical findings made no significant difference. MMP-1 mRNA was detected more frequently in OA groups (7/16 joints, 43.8%) than in normal bony structure group (1/15 joints, 6.7%). Expression of MMP-1 mRNA in retrodiscal tissue might be related with OA of the TMJ.

In situ Gel Forming Stereocomplex Composed of Four-Arm PEG-PDLA and PEG-PLLA Block Copolymers

  • Jun, Yeo-Jin;Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Seung-Jin
    • Macromolecular Research
    • /
    • 제16권8호
    • /
    • pp.704-710
    • /
    • 2008
  • Injectable hydrogels are quite promising materials due to their potential to minimize invasive implantation and this provides versatile fitness irrespective of the damaged regions and facilitates the incorporation of bioactive agents or cells. In situ gel formation through stereocomplex formation is a promising candidate for injectable hydrogels. In this paper, a new series of enantiomeric, four-arm, PEG-PLA block copolymers and their stereocomplexed hydrogels were prepared by bulk ring-opening polymerization of D-lactide and L-lactide, respectively, with stannous octoate as a catalyst. The prepared polymers were characterized by $^1H$ nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT IR) spectroscopy, gel permeation chromatography (GPC) and thermal gravitational analysis (TGA), confirming the tailored structure and chain lengths. The swelling and degradation behavior of the hydrogels formed from a selected copolymer series were observed in different concentrations. The degradation rate decreased with increasing polymer content in the solution. The rheological behavior indicated that the prepared hydrogel underwent in situ gelation and had favorable mechanical strength. In addition, its feasibility as an injectable scaffold was evaluated using a media dependence test for cell culture. A Tris solution was more favorable for in situ gel formation than PBS and DMEM solutions were. These results demonstrated the in situ formation of hydrogel through the construction of a stereocomplex with enantiomeric, 4-arm, PEG-PLA copolymers. Overall, enantiomeric, 4-arm, PEG-PLA copolymers are a new species of stereocomplexed hydrogels that are suitable for further research into injectable hydrogels.

Light-Chain Cardiac Amyloidosis: Cardiac Magnetic Resonance for Assessing Response to Chemotherapy

  • Yubo Guo;Xiao Li;Yajuan Gao;Kaini Shen;Lu Lin;Jian Wang;Jian Cao;Zhuoli Zhang;Ke Wan;Xi Yang Zhou;Yucheng Chen;Long Jiang Zhang;Jian Li;Yining Wang
    • Korean Journal of Radiology
    • /
    • 제25권5호
    • /
    • pp.426-437
    • /
    • 2024
  • Objective: Cardiac magnetic resonance (CMR) is a diagnostic tool that provides precise and reproducible information about cardiac structure, function, and tissue characterization, aiding in the monitoring of chemotherapy response in patients with light-chain cardiac amyloidosis (AL-CA). This study aimed to evaluate the feasibility of CMR in monitoring responses to chemotherapy in patients with AL-CA. Materials and Methods: In this prospective study, we enrolled 111 patients with AL-CA (50.5% male; median age, 54 [interquartile range, 49-63] years). Patients underwent longitudinal monitoring using biomarkers and CMR imaging. At follow-up after chemotherapy, patients were categorized into superior and inferior response groups based on their hematological and cardiac laboratory responses to chemotherapy. Changes in CMR findings across therapies and differences between response groups were analyzed. Results: Following chemotherapy (before vs. after), there were significant increases in myocardial T2 (43.6 ± 3.5 ms vs. 44.6 ± 4.1 ms; P = 0.008), recovery in right ventricular (RV) longitudinal strain (median of -9.6% vs. -11.7%; P = 0.031), and decrease in RV extracellular volume fraction (ECV) (median of 53.9% vs. 51.6%; P = 0.048). These changes were more pronounced in the superior-response group. Patients with superior cardiac laboratory response showed significantly greater reductions in RV ECV (-2.9% [interquartile range, -8.7%-1.1%] vs. 1.7% [-5.5%-7.1%]; P = 0.017) and left ventricular ECV (-2.0% [-6.0%-1.3%] vs. 2.0% [-3.0%-5.0%]; P = 0.01) compared with those with inferior response. Conclusion: Cardiac amyloid deposition can regress following chemotherapy in patients with AL-CA, particularly showing more prominent regression, possibly earlier, in the RV. CMR emerges as an effective tool for monitoring associated tissue characteristics and ventricular functional recovery in patients with AL-CA undergoing chemotherapy, thereby supporting its utility in treatment response assessment.

폴리카복실레이트 분자 구조에 따른 시멘트페이스트의 분산 및 흡착 특성 연구 (The Dispersibility and Adsorption Behaviour of Cement Paste with Molecular Structures of Polycarboxylates)

  • 신진용;홍지숙;서정권;이영석;황의환
    • 콘크리트학회논문집
    • /
    • 제18권4호
    • /
    • pp.489-496
    • /
    • 2006
  • 분자 구조 중 $\pi$ 결합을 갖고 있는 카복시산과 폴리에틸렌글리콜 메틸에테르 메타크릴레이트(PMEM)를 자유 라디칼 반응에 의해 그라프트 공중합된 폴리카복실레이트(PC)계 고유동화제를 합성했고, FT-IR, $^{13}C-NMR$, 그리고 GPC를 활용하여 합성된 PC의 화학 구조 및 분자량을 조사했다. 4종의 카복시산(메타크릴산, 아크릴산, 무수말레인산, 그리고 이타콘산)과 [카복시산]/[PMEM]의 몰비를 변수로 시멘트페이스트에 적용한 결과, [카복시산]/[PMEM]의 몰비가 높을수록 시멘트 입자 상에 흡착량과 시멘트페이스트 유동성은 증가했다. 흡착량은 메타크릴산을 적용한 PC가 가장 높았고, 유동성은 아크릴산을 구조에 적용했을 때 가장 우수했다. 그러나 무수말레인산과 이타콘산을 주쇄로 사용한 경우 흡착 및 유동 특성이 좋지 않았다.