• Title/Summary/Keyword: Magnetic attachment

Search Result 77, Processing Time 0.024 seconds

Fabrication and Manipulation of Gold 1D Chain Assemblies Using Magnetically Controllable Gold Nanoparticles

  • Kim, Lily Nari;Kim, Eun-Geun;Kim, Junhoi;Choi, Sung-Eun;Park, Wook;Kwon, Sunghoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3735-3739
    • /
    • 2012
  • We have developed magnetically controllable gold nanoparticles by synthesizing superparamagnetic $Fe_3O_4$ core/gold shell nanoparticles. The core/shell particles have the capability of forming gold 1D chains in the presence of an external magnetic field. Here we demonstrate dynamic and reversible self-assembly of the gold 1D chain structures in an aqueous solution without any templates or physical or chemical attachment. The spatial configuration of gold chains can be arbitrarily manipulated by controlling the direction of a magnetic field. This technique can provide arbitrary manipulation of gold 1D chains for fabrication purpose. To demonstrate this capability, we present a technique for immobilization of the gold particle chains on a glass substrate.

A Study on the Compensation of Transducer Effects for the Measurement of Vibration with an Impedance Head (임피턴스헤드로 진동계측시 변환기의 부착영향을 보상하는 방법에 관한 연구)

  • 이현엽;박재영
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.117-122
    • /
    • 1995
  • The transfer matrix method is proposed to compensate the attachment effect of a piezo-electric impedance head. To validate the proposed method, an experiment is carried out for axial vibration of a uniform rod for which an analytical solution is known. The impedance head is attached to the test rod by a stud and is connected to the exciter. The frequency response function is mesured by applying random excitation from the electro-magnetic exciter. The frequency response function compensated by the method proposed in this research shows good agreement with the analytical solution.

  • PDF

Improved Torque Ripple Through Pole Piece Deformation of Gear Ratio Transformed Magnetic Gear (폴피스 변형을 통한 기어비 변환형 마그네틱 기어의 토크 리플 개선)

  • Beom-Seok Byeon;Eui-Jong Park;Yong-Jae Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.77-84
    • /
    • 2024
  • This paper introduces a study on an electromagnet magnetic gear designed for gear ratio conversion. In comparison to magnetic gears using permanent magnets, this electromagnet magnetic gear exhibits lower torque density, highlighting the need for torque density improvement. To address this, the research focuses on enhancing torque density by examining the consistent orientation of each rotor's magnetization during gear ratio conversion and attaching permanent magnets accordingly. However, an issue arises due to the uneven magnetic flux density caused by the non-uniform attachment of permanent magnets, leading to an increase in torque ripple. Therefore, building upon previous studies aimed at reducing torque ripple in electromagnet magnetic gears, this research explores the optimal methods, such as pole piece bridges and fillet configurations, to mitigate torque ripple even during gear ratio conversion.

Design and Experimental Implementation of Easily Detachable Permanent Magnet Reluctance Wheel for Wall-Climbing Mobile Robot

  • Kim, Jin-Ho;Park, Se-Myung;Kim, Je-Hoon;Lee, Jae-Yong
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.128-131
    • /
    • 2010
  • In this paper, we propose a new design of the permanent magnet reluctance wheel which will make it possible to attach the robot to a vertical plane and move it. In the newly suggested design, a permanent magnet is utilized to enhance the adhesive force during attachment, and an electromagnet is produced to weaken the magnetic field of the permanent magnet and reduce the adhesive force for easier detachment of wheels from steel plates. To characterize the performance of this new wheel design, a 3-D finite element analysis is executed using a commercial FE program. The results show that the adhesive force is reduced effectively by the electromagnet which flows in the reverse direction of the magnetic loop of the permanent magnet when the current is supplied to the coil.

A Study on the Driving Principles of a Novel Non-contact Surface Actuator Using Combination of Magnetic Force (비접촉 평면 구동기의 자기력 조합 방식 구동 원리)

  • Jung, Kwang-Suk;Baek, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.115-121
    • /
    • 2001
  • In micro automation technology, the concurrent realization of a high resolution and a large operating rage has been achieved by a dual actuator, usually called by piggy-back system, conventionally. But, because of its manufacturing cost, the complexity of control, and the limit of overall bandwidth, the contract-free and single servo actuators have been suggested with specific applications. In this paper, we suggest a novel non-contact surface actuator suing combination of the Lorentz force and the magnetized force, and discuss the actuating principles including an analytical approach. Differently from the existing planar system, an operating range of the suggested system can be expanded by an additional attachment of active elements. Therefore, it is estimated to be suitable for the next-generation moving system.

  • PDF

Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system

  • Ryu, Kyoung-Seok;Choi, Yun-Seok;Ko, Jun-Sang;Kim, Seong-Ock;Kim, Hyun-Jung;Cheong, Hae-Kap;Jeon, Young-Ho;Choi, Byong-Seok;Cheong, Chae-Joon
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.852-857
    • /
    • 2008
  • Little attention has been paid to the specificity between E2 and the target protein during ubiquitination, although RING-E3 induces a potential intra-molecular reaction by mediating the direct transfer of ubiquitin from E2 to the target protein. We have constructed artificial E2 fusion proteins in which a target protein (p27) is tethered to one of six E2s via a flexible linker. Interestingly, only three E2s (UbcH5b, hHR6b, and Cdc34) are able to ubiquitinate p27 via an intra-molecular reaction in this system. Although the first ubiquitination of p27 (p27-Ub) by Cdc34 is less efficient than that of UbcH5b and hHR6b, the additional ubiquitin attachment to p27-Ub by Cdc34 is highly efficient. The E2 core of Cdc34 provides specificity to p27, and the residues 184-196 are required for possessive ubiquitination by Cdc34. We demonstrate direct E2 specificity for p27 and also show that differential ubiquitin linkages can be dependent on E2 alone.

Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection

  • Ryu, Joo-Young;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.237-253
    • /
    • 2017
  • Among various structural health monitoring technologies, impedance-based damage detection has been recognized as a promising tool for diagnosing critical members of civil structures. Since the piezoelectric transducers used in the impedance-based technique should be bonded to the surface of the structure using bonding layers (e.g., epoxy layer), it is hard to maintain the as-built condition of the bonding layers and to reconfigure the devices if needed. This study presents an experimental investigation by using magnetically attached PZT-interface for the impedance-based damage detection in bolted girder connections. Firstly, the principle of the impedance-based damage detection via the PZT-interface device is outlined. Secondly, a PZT-interface attachment method in which permanent magnets are used to replace the conventional bonding layers is proposed. Finally, the use of the magnetic attraction for the PZT-interface is experimentally evaluated via detecting the bolt-loosening events in a bolted girder connection. Also, the sensitivity of impedance signatures obtained from the PZT-interface is analyzed with regard to the interface's material.

THE EFFECT OF PERMANENT MAGNET CONNECTING WITH DENTAL IMPLANT ON DISTRIBUTION AND ATTACHMENT OF OSTEOBLAST-LIKE CELL AROUND THE DENTAL IMPLANT (임플랜트에 연결한 영구자석이 임플랜트 주위 뼈모세포의 분포와 부착에 미치는 영향에 관한 연구)

  • Oh Na-Hee;Choi Boo-Byung;Kwon Kung-Rock;Baik Jin;Lee Sung-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.511-518
    • /
    • 2005
  • Purpose: The purpose of this study is to find the effect of rare earth magnet's magnetic field of to the osteoblast around the implant by the means of observation number, and distribution around the implant which is connected to the permanent magnet but not, counted and compared by the number of cells attached to the surface of the implant. Material and method: The permanent magnets, made in the healing cap form, were connected to the implant future, and placed on the culture plate, The osteoblast-like cell: MC3T3-E1 were used for cell culture. As the control group, the implant were connected to normal healing cap, and cultured in the same conditions. 48 hours later, using inverted microscope, the number and distribution of osteoblast around the implant were observed, and 72 hours later, the number of the cells attached to the implant were counted. Results: As a result, the implant connected to the permanent magnet had proved to have a more concentrated cell distribution rate than the control group. The implant connected to the permanent magnet, neck area : which has about 10 gauss magnetic force, had more cells than apex area. The implant connected to the permanent magnet had proven to attach to the osteoblast more productively than control group's implant. Conclusions: This research showed that the magnetic field of the permanent magnet affected the distribution and growth rate of the osteoblast around the implant. In order to support this study, it also had need to monitor the progress of the permanent magnet specifically shown on the neck area, which has10 gauss magnetic force. So after additional research on the distribution and attachment of the cells, and further more, on bone formation, it will be concluded that the clinical applications ,such as immediate loading of implant treatment are possible.

Analysis of Isometry of the Anterior Cruciate Ligament for Optimal Ligament Reconstruction (전방십자인대의 최적 재건을 위한 등장성 해석)

  • Park Jung-Hong;Suh Jeung-Tak;Moon Byung-Young;Son Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.457-464
    • /
    • 2006
  • The anterior cruciate ligament (ACL) is liable to a major injury that often results in a functional impairment requiring surgical reconstruction. The success of reconstruction depends on such factors as attachment positions, initial tension of ligament and surgical methods of fixation. The purpose of this study is to find isometric positions of the substitute during flexion/extension. The distance between selected attachments on the femur and tibia was computed from a set of measurements using a 6 degree-of-freedom magnetic sensor system. A three-dimensional knee model was constructed from CT images and was used to simulate length change during knee flexion/extension. This model was scaled for each subject. Twenty seven points on the tibia model and forty two points on the femur model were selected to calculate length change. This study determined the maximum and minimum distances to the tibial attachment during flexion/extension. The results showed that minimum length changes were $1.9{\sim}5.8mm$ (average $3.6{\pm}1.4mm$). The most isometric region was both the posterosuperior and anterior-diagonal areas from the over-the-top. The proposed method can be utilized and applied to an optimal reconstruction of ACL deficient knees.

THE ELECTROCHEMICAL STUDY ON CORROSION RESISTANCE OF VARIOUS DENIAL MAGNETIC ATTACHMENTS (수종 치과용 자석유지장치의 부식저항성에 대한 전기화학적 연구)

  • Sohn Byoung-Sup;Chang Ik-Tae;Heo Seong-Joo;Keak Jai-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.4
    • /
    • pp.336-350
    • /
    • 2001
  • The purpose of this study was to investigate corrosion tendency and to compare corrosion resistance of three dental magnetic attachments and its keeper alloy by coercive, electrochemical method. By using petentiodynamic polarization technique, magnetic elements and its keeper alloy of Magfit EX600 system(MF, MFK), Dyna ES regular system(DN, DNK) and Shiner SR magnet system(SR, SRK) were corroded electrochemically in 0.9% NaCl electrolytic solution. Open-circuit potential and anodic polarization curve was measured with Potentiostat(model 273 EG&E) and polarization curve was created by current density per square area following scanning of increased series of voltage in the rate of 1.0mV per second. Before and after electrochemical corrosion, the surface roughness test was done. Thereafter the change of mean surface roughness value(Ra) and mean peak value(Rt) of surface roughness was compared one another. In order to observe the corroded surface of each specimen, metallurgical light microscopic(${\times}37.5$) and scanning electron microscopic view(SEM ${\times}100$) was taken and compared one another. Conclusion is followings. 1. All of six covering metal of dental magnetic attachments and its keeper alloy were corroded in various degree after electrochemical corrosion. 2. The corrosion resistance of which used in this experiment is the following in high order; DNK, MFK, DN, MF, SRK and SR. 3. Especially Shiner magnet system and its keeper alloy were more severely corroded after electrochemical corrosion and the change of Ra Rt value were more increased than others. 4 Metallurgical and scanning electron microscopic view showed the pitting corrosion tendency of all experimental alloy but DNK and SR. 5. Covering metal of magnet was more corroded than its keeper alloy.

  • PDF