• Title/Summary/Keyword: Magnetic array

Search Result 285, Processing Time 0.023 seconds

Embodiment of Spatially Arterial Pulse Diagnostic Apparatus using Array Multiple Hall Devices

  • Lee, Sang-Suk;Kim, Gi-Wang;Ahn, Myung-Cheon;Park, Young-Seok;Choi, Jong-Gu;Choi, Sang-Dae;Park, Dal-Ho;Hwang, Do-Guwn;Yoon, Hyung-Rho
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.721-726
    • /
    • 2007
  • The study relates to achievement and analysis of 3-dimensional spatial pulse wave archived by a spatially arterial pulse diagnostic apparatus (SAPDA), wherein a pulse sensing part array consists of multiple hall devices and is located over a skin contacting part which consists of a magnetic material. When a radially arterial pulse is transferred to the magnetic material, which is contacted skin that results in changes in a magnetic field of the lower part of the pulse sensing part array, the changes in a magnetic field can be detected by the commercial Hall semiconductor device of the pulse sensing part array. Finally, according to development of SAPDA, the 3-dimensionally arterial pulse waveform can be measured noninvasively by detecting the changes of the magnetic field.

Analysis of Magnetic Dipole Moment for a 300-W Solar-Cell Array

  • Shin, Goo-Hwan;Kim, Dong-Guk;Kwon, Se-Jin;Lee, Hu-Seung
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.181-186
    • /
    • 2019
  • The attitude information of spacecraft can be obtained by the sensors attached to it using a star tracker, three-axis magnetometer, three-axis gyroscope, and a global positioning signal receiver. By using these sensors, the spacecraft can be maneuvered by actuators that generate torques. In particular, electromagnetic-torque bars can be used for attitude control and as a momentum-canceling instrument. The spacecraft momentum can be created by the current through the electrical circuits and coils. Thus, the current around the electromagnetic-torque bars is a critical factor for precisely controlling the spacecraft. In connection with these concerns, a solar-cell array can be considered to prevent generation of a magnetic dipole moment because the solar-cell array can introduce a large amount of current through the electrical wires. The maximum value of a magnetic dipole moment that cannot affect precise control is $0.25A{\cdot}m^2$, which takes into account the current that flows through the reaction-wheel assembly and the magnetic-torque current. In this study, we designed a 300-W solar cell array and presented an optimal wire-routing method to minimize the magnetic dipole moment for space applications. We verified our proposed method by simulation.

Magnetic Interaction in FeCo Alloy Nanotube Array

  • Zhou, D.;Wang, T.;Zhu, M.G.;Guo, Z.H.;Li, W.;Li, F.S.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.413-416
    • /
    • 2011
  • An array of FeCo nanotubes has been successfully fabricated in the pores of porous anodic aluminum oxide (AAO) templates by wetting templates method. The morphology and structure of the nanotube array were characterized by scanning electron microscopy, transmission electron microscopy and x-ray diffraction. The average diameter of the nanotubes was about 200 nm, and the length was more than 10 ${\mu}m$. Vibrating sample magnetometer and superconducting quantum interference device were used to investigate the magnetic properties of the nanotube array. Interaction between the nanotubes has been found to be demagnetizing as expected and the switching field distribution is broad.

Control of Polarity by Magnetic Array Table in Magnetic Abrasive Polishing Process (자기연마가공에서 마그네틱 어레이 테이블에 의한 극성 제어)

  • Gang, Han-Sung;Kim, Tae-Hui;Kawk, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1643-1648
    • /
    • 2010
  • It is very difficult to polish non-magnetic materials by the magnetic abrasive polishing (MAP) process because magnetic force is required for MAP, but the magnetic force for non.magnetic materials is low. In this study, we aimed to develop a magnetic array table and control the magnetic polarity such that the magnetic force can be increased for the MAP of non-magnetic materials. The newly designed magnetic array table has 32 electro magnets, and the magnetic polarity of each electro-magnet can be easily controlled by changing the electric polarity. It was analytically verified that the magnetic flux density of non-magnetic materials can be varied by varying the applied magnetic polarity.

Linear Halbach array application of MagLev brake system (선형 Halbach 배열의 자기부상열차 제동시스템의 적용)

  • Jang, S.M.;Cha, S.D.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.318-320
    • /
    • 2001
  • This paper deal with analysis linear Halbach array. For the theoretical analysis of linear Halbach array, each magnetic vector of permanent magnet is displied by the Furiere series. A result of analytical method to calculate the magnetic flux density compared with a result of numerical method. when linear Halbach array moves above a conductivity material, a developed force between linear Halbach array and a closed loop is analyzed by the theoretical analysis.

  • PDF

Three-Dimensional Self-Assembled Micro-Array Using Magnetic Force Interaction

  • Park, Yong-Sung;Kwon, Young-Soo;Eiichi Tamiya;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.5
    • /
    • pp.182-188
    • /
    • 2003
  • We have demonstrated a fluidic technique for self-assembly of microfabricated parts onto substrate using patterned shapes of magnetic force self-assembled monolayers (SAMs). The metal particles and the array were fabricated using the micromachining technique. The metal particles were in a multilayer structure (Au, Ti, and Ni). Sidewalls of patterned Ni dots on the array were covered by thick negative photoresist (SU-8), and the array was magnetized. The array and the particles were mixed in buffer solution, and were arranged by magnetic force interaction. Binding direction of the metal particle onto Ni dots was controlled by multilayer structure and direction of magnetization. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost even with the Au surface on top. The particles were successfully arranged on the array.

A New Measurement Method of a Radial Pulse Wave Using Multiple Hall Array Devices

  • Lee, Sang-Suk;An, Myoung-Chone;Ahn, Sung-Hoon
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.132-136
    • /
    • 2009
  • This study investigated the radial pulse waveform obtained by a medical pulsimeter sensor. A pulse-sensing part array consisting of multiple Hall devices was located over a skin-contacting part with a hard magnetic material. The periodic movement of the magnetic material of the skin-contacting part affected the magnetic field in the pulse-sensing part array and was detected by multiple Hall devices. The analysis of a radial pulse waveform that is measured noninvasively by detecting the changes of the magnetic field can be used to develop a new diagnostic algorithm of oriental medical apparatus.

Halbach Magnetic Circuit for Voice Coil Motor in Hard Disk Drives

  • Choi, Young-Man;Ahn, Da-Hoon;Gweon, Dae-Gab;Jeong, Jae-Hwa
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.143-147
    • /
    • 2010
  • Rotary-type voice coil motors are widely used as actuators in hard disk drives. The recent trend toward higher density and smaller form factors in data storage devices requires performance improvement of the voice coil motor. In this study, we introduce a Halbach magnet array to the voice coil motor in order to increase the force generation. The Halbach magnetic circuit outperforms the conventional magnetic circuit due to the confined magnetic flux. To investigate the performance of the Halbach magnetic circuit, we analyze air gap flux density with the various shapes and thickness of the magnets using 3-dimensional finite element analysis. Consequently the optimum shape of the Halbach magnetic circuit is proposed. Simulations and experimental results proved effectiveness of the proposed magnet array in the voice coil motor for a commercial hard disk drive.

A Magnetic Brake for Small Wind Turbines

  • Jee, I.H.;Nahm, S.Y.;Kang, S.J.;Ryu, Kwon-Sang
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.33-35
    • /
    • 2012
  • A magnetic brake system was fabricated for use with small wind turbines. The torque of the pivot did not change as the speed of revolution increased when the magnetic array disc was far from the salient of the aluminum housing, the torque abruptly increased as the magnetic array approached the salient of the aluminum housing. The torque increased as a quadratic function of the speed of revolution when the distance between the magnetic array and the datum point was 60 mm.

Magnetization Behavior of Co Nanodot Array

  • Chang, Joon-Yeon;Gribkov, B.A.;Kim, Hyung-Jun;Koo, Hyun-Cheol;Han, Suk-Hee;Mironov, V.L.;Fraerman, A.A.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.17-20
    • /
    • 2007
  • We performed magnetic force microscopy (MFM) observation on array of Co dots in order to understand magnetic state and magnetization behavior of submicron sized Co dots patterned on GaMnAs bridge. MFM observations showed the magnetization reversal and processes of local magnetization of individual ferromagnetic Co nanodots. Magnetic state of Co dots either single domain or vortex is dependent on geometrical size and thickness. Transition from single domain to vortex state can be realized with MFM tip assisted local field. Magnetization reversal process takes place through sequential reversal of individual dots. Localized inhomogeneous magnetic field can be manipulated by controlling magnetic state of individual Co dot in the array structure.