• 제목/요약/키워드: Magnetic air-gap

검색결과 321건 처리시간 0.033초

횡자속 영구자석형 자기부상전자석 시스템의 공극제어에 관한 연구 (A Study on Air-gap Control for Transverse Flux Permanent Magnet Type Magnetic Levitation Electromagnet System)

  • 이재원;김명재;황선환
    • 한국산업융합학회 논문집
    • /
    • 제26권6_2호
    • /
    • pp.1127-1134
    • /
    • 2023
  • In this paper, we proposes a study on air gap control for magnetic levitation of transverse flux permanent magnet electromagnets. In general, mechanical systems have a high failure rate of bearings. Bearings in particular are problematic because they have high surface wear rate and degradations. To solve this problem, replacing the bearing with a magnetic levitation electromagnet system can provide lightweight and efficiency improvements. However, precise air gap control is essential to control the magnetic levitation electromagnet system. Therefore, in this paper, we identify the instable cause of gap control through a mathematical modeling and verify through experiment a control algorithm that can use compensation.

이산형 칼만필터를 이용한 자기부상시스템의 공극외란 감쇄 (Air-gap Disturbance Attenuation of Magnetic Levitation Systems using Discrete Kalman Filter)

  • 성호경;정병수;장석명
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권7호
    • /
    • pp.444-451
    • /
    • 2004
  • Conventional magnetic levitation systems could show unsatisfactory performance under air-gap disturbance due to rail irregularities. In this paper, we propose a feedback control system with discrete Kalman filter for air-gap disturbance attenuation. It is shown that excellent system performance can be obtained with the use of discrete Kalman filter, and that results from experiments agree well with those of simulations.

BLDC 전동기의 동적 편심 및 전자기적 불평형력을 고려한 편심 회전자의 과도 동적 해석 (Transient Dynamic Analysis of a Dynamci Eccentric Rotor with Unbalanced Magnetic Forces in BLDC Motors)

  • 김태종;황상문;박노길
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.401-409
    • /
    • 2000
  • Vibration of a BLDC motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the motor air-gap. When a relative misalignment of rotor in the air-gap center exists on the assemblage it is considered to influence the motor system characteristics, depending on the degree of misalignment. The rotor-motor system used in a washing machine is modeled using FE-TM and a magnetic force of BLDC motor with radial rotor eccentricity is analyzed. And the transient whirl responses of a rotor system with relative misalignment in the motor air-gap are investigated considering mechanical origins and magnetic effects. Results show that rotor misalignment in the air-gap affect the vibration of the rotor-motor system.

  • PDF

Analysis of Contact Force in Eddy-current System Using the Virtual Air-Gap Concept

  • Park, Byung Su;Kim, Hwi Dae;Choi, Hong Soon;Park, Il Han
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1349-1355
    • /
    • 2015
  • It is difficult to calculate the magnetic force of an object of magnetic material in contact with other objects using the existing methods, such as Maxwell stress tensor method, magnetic charge method, or magnetizing current method. These methods are applicable for force computation only when the object is surrounded by air. The virtual air-gap concept has been proposed for calculating the contact force. However, its application is limited to magneto-static system. In this paper, we present the virtual air-gap concept for contact surface force in the eddy-current system. Its validity and usefulness are shown by comparison between numerical and experimental examples.

Examination of Efficiency Based on Air Gap and Characteristic Impedance Variations for Magnetic Resonance Coupling Wireless Energy Transfer

  • Agcal, Ali;Bekiroglu, Nur;Ozcira, Selin
    • Journal of Magnetics
    • /
    • 제20권1호
    • /
    • pp.57-61
    • /
    • 2015
  • In this paper wireless power transmission system based on magnetic resonance coupling circuit was carried out. With the research objectives based on the mutual coupling model, mathematical expressions of optimal coupling coefficients are examined. Equivalent circuit parameters are calculated by Maxwell software, and the equivalent circuit was solved by Matlab software. The power transfer efficiency of the system was derived by using the electrical parameters of the equivalent circuit. System efficiency was analyzed depending on the different air gap values for various characteristic impedances. Hence, magnetic resonance coupling involves creating a resonance and transferring the power without radiating electromagnetic waves. As the air gap between the coils increased the coupling between the coils were weakened. The impedance of circuit varied as the air gap changed, affecting the power transfer efficiency.

Effects of Air Gap on HTS Magnet Consisting of Double Pancake Windings

  • Ku, Myung-Hwan;Kang, Myung-Hun;Kim, Young-Min;Lee, Hee-Joon;Cha, Guee-Soo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권4호
    • /
    • pp.33-36
    • /
    • 2009
  • An air gap between the pancake windings was provided in this paper to increase the central magnetic field of a high temperature superconducting (HTS) magnet consisting of pancake windings. Unlike the LTS magnet, providing an air gap between the pancake windings increases the central magnetic field of a HTS magnet. Furthermore, the uniformity of the magnetic field near the center of the magnet increased because the pancake windings spread out in wider area. Effects of the air gap on the central magnetic field of an HTS magnet was described in this paper, Calculation of the critical current was carried out by using E-J relation of the HTS wire and the optimization technique was adopted to obtain the appropriate critical current which could maximize the central magnetic field. Pancake windings with BSCCO-2223 HTS wire were wound on glass epoxy bobbin. 6 double pancake windings with 200 turns were used to construct a HTS magnet. Characteristics of the HTS magnet including the central magnetic field and the uniformity of the magnetic field were measured and compared with the results of calculation.

ISC 밸브용 테이퍼 플런저형 비례전자석에 관한 연구 (A Study on the Taper Plunger Type Proportional Electromagnet for ISC Valve)

  • 송창섭;이태형;윤장상
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.125-132
    • /
    • 1993
  • On this study, magnetic force versus input currents is analyzed by modeling taper plunger type proportional electromagnet of ISC valve using the permernce method. And, the reliabiliy of simulation is verified by comparing the experimental values with the calaulate magnetic force. From the result of this study, it is found that the taper angles at plunger and core, the length of air gap between plunger and yoke are the prumary factors in designing taper plunget type proportional electromagnet. Magnetic force is decreased as a whole according to increasing the air gap between pluger and yoke, and vise versa. But, the magnetic force is not proportional to current, when the air gap is very small. In case of decreasing the taper angle of pluger, the stroke range of plunger where magnetic force is proportional to current becomes farther from core.

  • PDF

슬롯 고조파를 고려한 전기기계 공극자계의 해석 방법에 관한 연구 (A study on the method of Air gap field Analysis considering slot harmonics in the electric machine)

  • 임달호;김생수;김영중;윤상백
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.33-36
    • /
    • 1987
  • Is this study it is proposed a method which is able to compute preciously using time-difference method to the air-gap magnetic field in electric machines take into account of eddy current induced. The air-gap magnetic field has slot harmonics which are due to the structure of machines and the shape of slot harmonics varies with the related positions of slots when the rotor moves. Accordingly, considering the influence of slot-harmonics, we coupled macro-air-gap element with first-order triangular elements in domain and used direct-convergence method for magnetic saturation.

  • PDF

Analytical Investigation on Fundamental Electrical Characteristics of Large Air-gap Superconducting Synchronous Machine

  • Yazdanian, M.;Elhaminia, P.;Zolghadri, M.R.;Fardmanesh, M.
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.260-267
    • /
    • 2013
  • In this paper a general 2-D model of a large air-gap synchronous machine either with non-magnetic or magnetic core rotor is investigated and electrical characteristics of the machine are analytically calculated. Considering the general model, analytical equations for magnetic field density in different regions of the large air-gap machine are calculated. In addition, self and mutual inductances in the proposed model of the machine have been developed, which are the most important parameters in the electromagnetic design and transient analysis of synchronous machines. Finite element simulation has also been performed to verify the obtained results from the equations. Analytical results show good agreement with FEM results.

BLDC 전동기의 정현적 공극 자속밀도 구현에 의한 코깅 토크 저감 (Reduction of Cogging Torque of BLDC Motor by Sinusoidal Air-Gap Flux Density Distribution)

  • 김사무엘;정승호;류세현;권병일
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.57-65
    • /
    • 2007
  • Along with the development of power electronics and magnetic materials, permanent magnet (PM) brushless direct current (BLDC) motors are now widely used in many fields of modern industry BLDC motors have many advantages such as high efficiency, large peak torque, easy control of speed, and reliable working characteristics. However, Compared with the other electric motors without a PM, BLDC motors with a PM have inherent cogging torque. It is often a principle source of vibration, noise and difficulty of control in BLDC motors. Cogging torque which is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance can be reduced by sinusoidal air-gap flux density waveform due to reduction of variation of magnetic reluctance. Therefore, this paper will present a design method of magnetizing system for reduction of cogging torque and low manufacturing cost of BLDC motor with isotropic bonded neodynium-iron-boron (Nd-Fe-B) magnets in ring type by sinusoidal air-gap flux density distribution. An analytical technique of magnetization makes use of two-dimensional finite element method (2-D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation. In addition, For optimum design of magnetizing fixture, Factorial design which is one of the design of experiments (DOE) is used.