• Title/Summary/Keyword: Magnetic abrasive

Search Result 127, Processing Time 0.026 seconds

The Internal Finishing of Fine-Pipe Polished by using Magnetic Abrasive Machining. (자기연마를 이용한 미세파이프 내면가공)

  • Rho, T. W.;Park, W. K.;Seo, Y. I.;Choi, H.;Lee, J. C.;Cheong, S. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.964-967
    • /
    • 2002
  • An internal finishing process by the application of magnetic abrasive machining has been developed as a new technology to obtain a fine inner surface of pipe. In this paper, another method of magnetic abrasive machining in which the N and S magnetic poles are feed and a workpiece is rotated only is tried in a fine-pipe, and its finishing characteristics is experimently investigated by various effective factors such as feeding amplitude. From the experimental results, it is found that the feed effects of magnetic poles on the finishing characteristics are large in internal finishing.

  • PDF

Compound Machining of Milling and Magnetic Abrasive Polishing for Free Form Surface (자유곡면의 밀링 자기연마 복합가공에 관한 연구)

  • Kwak, Tae-Kyung;Kim, Sang-Oh;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.455-461
    • /
    • 2010
  • Automated magnetic abrasive polishing which can be applied after machining of the mold on a machine tool without unloading is very effective for finishing a complicated injection mold surface. This study aims to realize one step polishing of free form surface with the same machine tool. For this purpose, magnetic flux density according to the change of curvature radii was simulated for selecting polishing conditions and experimental verification was performed with a complicated mold of aluminum alloy. As a result, it was seen by the simulation that the magnetic flux density at a gradual curvature of the mold was higher than at a steep curvature and the higher magnetic flux density produced the better surface roughness in the experimentation. The deviation for the surface roughness of the mold decreased on the whole and the uniform mold surface was obtained after the automated magnetic abrasive polishing.

A Study of Micro-Channel Fabrication by Micro-Milling and Magnetic Abrasive Deburring (마이크로 밀링과 자기디버링을 적용한 마이크로 유동채널 가공)

  • Kwak, Tae-Kyung;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.899-904
    • /
    • 2011
  • This This study aims to verify burr formation and to remove the burrs in micro-channel fabrication using micro-machining tools. The machining processes are combined with micro-milling and magnetic abrasive deburring for AISI316 stainless steel. Depending on the micro-milling conditions that are applied, burrs are formed around the side walls. Magnetic abrasive deburring is used to remove these burrs. AISI316 stainless steel is a nonferrous material and its magnetic flux density, which is an important parameter for efficient magnetic abrasive deburring, is low. To enhance this magnetic flux density, we design and build a magnetic array table. The effect of removing burrs is evaluated via SEM and a surface tester.

Ultra Finishing by Magnet-abrasive Grinding for Internal-face of STS304 Pipe (STS304 파이프 내면의 초정밀 자기연마)

  • 김희남;윤영권;심재환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.947-952
    • /
    • 1997
  • The magnetic polishing is the useful method to finish using magnetic power of a magnet. The time hasn't been that long since the magnetic polishing method was introduced to korea as one of precision polishing techniques. However, the reasons for not being spreaded widely are the magnetic polishing method don't have mediocrity for machine, the efficiency of magnet-abrasive is confined as a bad polishing, and there are not many researchers in this field. The mechanism of this R&D is dealing with the dynamic state of magnet-abrasive. This paper deals with mediocritizing magnetic polishing device into regular lathe and this experiment was conducted in order to get a best surface roughness with low cost. Beside the subsidiary experiment was performed using the mixed magnet-abrasive with general alumina, barium. This paper introduced the main reason for difficulty using this method in industrial field. It needs more continues research on it. This paper contains the result of experiment to acquire the best surface roughness, not using the high-cost polishing material in processing. The average diameters of magnet-abrasive are the particles of 150 $\mu\textrm{m}$, 250 $\mu\textrm{m}$.

  • PDF

Determination of Curvature Radius of Magnetic Tool Using Weighted Magnetic Flux Density in Magnetic Abrasive Polishing (자속밀도 가중치에 의한 자유곡면 자기연마 공구곡률 선정)

  • Son, Chul-Bae;Ryu, Man-Hee;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.69-75
    • /
    • 2013
  • During the magnetic abrasive polishing of a curved surface, the improvement in surface roughness varies with the maximum value and distribution of magnetic flux density. Thus, in this study, the magnetic flux density on the curved surface was simulated according to curvature radii of magnetic tool. As a result of the simulation, the 14.5mm of the magnetic tool had a higher maximum magnetic flux density and it showed a large weighted magnetic flux density. The weighted magnetic flux density means the highest value for the magnetic flux density in the curvature of the magnetic tool. From the experimental verification, the better improvement in surface roughness was observed on wider area at the 14.5mm radius of the magnetic tool than other radii.

The Internal Finishing Characteristics of Non-ferromagnetic Pipe Polished by Magnetic Abrasive Machining(III) (자기연마법에 의한 비자성 파이브 내면의 연마특성(III))

  • Park, W. K.;Rho, T. W.;Seo, Y. I.;Choi, H.;lee, J. C.;Cheong, S. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.915-918
    • /
    • 1997
  • An internal finishing process by the application of magnetic abrasive machining has been developed as a new technology to obtain a fine inner surface of pipe. In this paper, an abrasive circulation system was designed and manufactured. As a result, it was found that a fine inner surface abrasive of pipe was available by the use of this machining methods. The basic machining characteristics of pin-type magnetic tools were analyzed experimentally. In addition, the experimental results show that we can realize that pin-type magnetic tools have more machining efficiency than iron particles as magnetic tools.

  • PDF

Analysis of the Performance of Magnetic Abrasive Deburring according to Powder Characteristics (분말 특성에 따른 자기연마에 의한 Deburring성능분석)

  • Chae Jong-Won;Ko Sung-Lim;Baron Yuri M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.37-43
    • /
    • 2004
  • The performance of magnetic abrasive finishing fur surface is evaluated by the characteristic curve. The characteristic curve is generated by experiment in surface finishing. For experiment, new magnetic inductor is designed and manufactured. 15 kinds of powders are provided to find the relationship between powder characteristic and finishing performance. As powder, Fe-TiC. Polymer-TiC and Fe-NbC are used with different size. The size of abrasives and location are also important factor for the performance. From characteristic curve, two index are obtained, which specify the initial finishing performance and endurance of finishing performance. It is proved that the performance index can be applied to select proper powder for efficient deburring. It is shown that the characteristic curve can be used as good tools for evaluating powder performance in surface finishing and deburring.

A Study on the Ultra-Precision Polishing Technique for the Upper Surface of the Micro-Channel Structure (미세채널 구조물 상부의 초정밀 연마 기술 연구)

  • 강정일;이윤호;안병운;윤종학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.313-317
    • /
    • 2003
  • Micro-Channel ultra-precision polishing is a new technology used in magnetic field-assisted relishing. In this paper, an electromagnet or the i18 of test system was designed and manufactured. A size of magnetic abrasive is used on 25~75${\mu}{\textrm}{m}$ and for the polish a micro-channel upper part. A surface of channel which is not even is manufactured using magnetic abrasive finishing at upper surface of micro-channel. As a result, the surface roughness rose by 80% after upper surface of micro- channel was polished up 8 minutes by polishing.

  • PDF

Improvement of Magnetic Force and Experimental Verification for Magnetic Abrasive Polishing of Aluminum Alloy (알루미늄의 자기연마가공에서 영구자석을 이용한 자기력향상)

  • Kim, Sang-Oh;Kwak, Jae-Seob
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.23-29
    • /
    • 2008
  • Magnetic abrasive polishing is one of the nontraditional machining technologies newly developed. But it was very difficult to cut non-magnetic materials using MAP process because the process was fundamentally possible by help of a magnetic farce. In this study, we aimed to verify analytically formation of the magnetic field in a case of the nonmagnetic materials especially focused on an aluminum alloy. And also an improving strategy of the magnetic force for the non-magnetic materials was proposed and experimentally verified. Design of experimental method was adopt for assessment of parameters' effect on the MAP results of the aluminum alloy.