• Title/Summary/Keyword: Magnetic Saturation Effect

Search Result 185, Processing Time 0.023 seconds

Strategic Utilization of Soft Magnetic Composite in a High-Speed Switched Reluctance Machine Depending on a Loss Pattern (손실 패턴에 따른 고속 스위치드 릴럭턴스 전동기의 SMC 분말을 이용한 효율 개선)

  • Lee, Cheewoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.323-327
    • /
    • 2017
  • Soft magnetic composite (SMC) material has recently received a significant attention in the area of high-speed machines because of its unique properties such as good design flexibility and low eddy current loss. However, SMC's electromagnetic property is poor compared to silicon steel in terms of saturation, relative permeability, and hysteresis loss. This paper presents a technique for utilization of SMC in two strategic designs of a switched reluctance machine (SRM) depending on a loss pattern. To investigate the effect of SMC's merits and demerits, the stator material is changed from laminated steel to SMC.

The Analysis of Transient currents in a Magnetic coupling High-Tc superconducting Fault Current Limiter (자기결합형 고온초전도한류기의 과도전류 해석)

  • Joo, Min-Seok;Chu, Yong;Yim, Do-Hyun;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.24-26
    • /
    • 1995
  • In this paper, we investigated transient fault currents in a magnetic coupling High-Tc superconducting current limiter(HCL). It has an important effect on the reliability and stability of the power system. In order to analyze transient fault characteristics of HCL, we fabricated a magnetic coupling HCL and tested it in different fault conditions. An important parameter of design and manufacture which makes HCL inherently reliable is reduction of inrush fault currents. Without inrush fault currents, the currents flowing under such conditions can be limited to a desired-value within one cycle. Inrush fault current depends on saturation, normal spot propagation velocity, turns ratio and the fault angle.

  • PDF

Impact of Eccentricity and Demagnetization Faults on Magnetic Noise Generation in Brushless Permanent Magnet DC Motors

  • Rezig, Ali;Mekideche, Mohammed Rachid;Djerdir, Abdesslem
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.356-363
    • /
    • 2011
  • Vibrations and noise in electrical machines are directly related to the characteristics of the radial forces on one hand, and mechanical behavior on the other [1, 4]. The characteristics of these forces depend on the air gap flux density, which is also influenced by other factors, such as stator slots and poles, saturation level, winding type, and certain faults. The aim of this work is to investigate the effect of eccentricity and demagnetization faults on electromagnetic noise generated by the external surface of Permanent Magnet Synchronous Machine [PMSM]. For this purpose, an analytical electromagnetic vibroacoustic model is developed. The results confirm the effect of eccentricity and demagnetization fault in generating some low modes radial forces.

The effect of anisotropy field of FeTaN thin films for ultraigh-hfrequency applications (초고주파대역용 소자를 위한 FeTaN 박막의 이방자계의 영향)

  • Ryu, Sung-Ryong;Bae, Seok;Jeong, Jong-Han;Kim, Choong-Sik;Nam, Seoung-Eui;Kim, Hyoung-June
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.303-305
    • /
    • 2000
  • The effect of anisotropy field on the high frequency magnetic characteristics of FeTaN films was investigated. Those films show good magnetic properties : 4$\pi$Ms of 13KG, Hc of 0.6 Oe, effective permeability(${\mu}$') of 800 with a stable frequency response up to 800MHz. The films also show a large anisotropy field(Hk) over 21Oe. It result from the increased anisotropy of patterned FeTaN films. The combination of high saturation magnetization and relatively high Hk in these films is believed to the partly responsible for FeTaN for the excellent high-frequency behavior.

  • PDF

Variation of Asymmetric Hysteresis Loops with Chemical Composition of Amorphous Ferromagnetic Alloys (비정질 자성 합금의 조성에 따른 비대칭 자기 이력 곡선의 변화)

  • 신경호;민성혜;이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.261-268
    • /
    • 1995
  • In order to investigate the origin of the asymmetric magnetization reversal effect, we studied the variation of magnetic hysteresis loops with the alloy composition in amorphous ferromagnetic alloy ribbons of ${(Fe_{1-x}Co_{x})}_{75}Si_{10}B_{15}$ system annealed at $380^{\circ}C$ for 16 hours in a zero field condition. The asymmetric magnetization reversal effect developed more strongly in amorphous ribbons having two metallic components than in ribbons having a single metallic component. The effect developed more strongly in ribbons showing a smaller value of the saturation mag¬netostriction. The development of the asymmetric magnetization reversal effect was affected by the ratio of two metallic components as well as the magnitude of the saturation magnetostriction.

  • PDF

Core loss Calculation of a Permanent Magnetic Motor Considering Mechanical Stress (영구자석 전동기 철심의 기계적 응력을 고려한 철손 해석)

  • Kim, Ji-Hyun;Ha, Kyung-Ho;Kwon, Oh-Yeoul;Kim, Jae-Kwan;La, Min-Soo;Lee, Sun-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.851_852
    • /
    • 2009
  • Shrink fitting which is assembling process to fix stator core on the motor frame is widely used at the mass production line of motors because of cost and productivity. This process produces compressive stress on a stator core, which causes negative effect for example, core and copper losses on motor performance. Magnetic properties of electrical steel are effected by both compressive and tensile and thermal stresses. Electromagnetic field analysis is considered one of the effective process since one can predict motor performance including core loss precisely. This method can consider non linear magnetic property with magnetic saturation which is typical electrical steel behavior. However this method is strongly depended on non linear magnetic data, one may have different calculation result whether considering mechanical stress or not. This study describes magnetic field analysis of a motor considering mechanical stress from shrink fitting. Analysis results are compared with each stress-free and stressed condition.

  • PDF

Composition and magnetic ProPerties of CoFecu alloys according to electrolysis conditions (전해조건에 따른 CoFeCu 함금박막의 조성, 우선방위 및 자기적 특성)

  • 예길촌
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.3-12
    • /
    • 1997
  • The composition, the preferred orientation and the magnetic properties of the CoFeCu alloys electrodepositen under various electrolysis conditions in sulfate baths ware investigated. As the D.C. current density increased, the Co content in alloy electrodeposits increased, while the Cu content decreased and Fe content remained content. The effect of magnetic field up to 300 Oe on the composition of alloys was negligible. The Cu content of the alloys deposited in pulse current increased noticeably with increasing off-time, while the Co and Fe content decreased. The coercivity of the alloys with 3.5 to 7.0wt.% Cu was 1.0 to 2.0 Oe, but increased noticeably above and below that composition. The application of magnetic field during deposition decreased the coercivity of alloys. The saturation flux density of the alloys with 3.5 to 5.0wt.% Cu was relatively high in the range from 16 to 20.7Gauss. The anisotropy field(HK) of the alloys deposited under the magnetic field(50∼300 Oe) ranged from 18 to 22 Oe. The alloys had fcc structure with (111) preferred orientation, whose distribution increased a little with increasing magnetic field.

  • PDF

Bias Field Effect of SmCo Films on Soft Magnetic Properties of CoZrNb Films (SmCo박막의 바이어스자계가 CoZrNb박막의 연자성특성에 미치는 효과)

  • Shin, K.H.;Kim, Y.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.5
    • /
    • pp.198-203
    • /
    • 2003
  • To investigate whether the use of hard magnetic film is available to generate bias magnetic field for a magnetoimpedance sensor, the magnetic properties of SmCo hard magnetic films were investigated as a function of their compositions. The saturation magnetization decreased with Sm content increasing in SmCo films. And, the coercive force increased in the extent of Sm content of 28 at%, but decreased as Sm content increased moreover. The bias field effect of SmCo film to amorphous CoZrNb film was investigated with the magnetization corves, permeabilities, and magnetic domain structures of SmCo/CoZrNb multilayers. The bias field of about 60 Oe was observed in the film with 3 mm ${\times}$ 0.5 mm, which can be constructed as a MI sensor, and this result strongly indicates that the bias field generated from a hard magnetic film is adequate to enhance the sensitivity of a MI sensor with hard/soft magnetic multilayer structure.

Synthesis of Fe-Doped TiO2/α-Fe2O3 Core-Shell Nanowires Using Co-Electrospinning and Their Magnetic Property (복합 전기방사법을 이용한 Fe-doped TiO2/α-Fe2O3 이중구조 나노와이어의 합성 및 자성 특성)

  • Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.423-428
    • /
    • 2014
  • We synthesized Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell nanowires(NWs) by means of a co-electrospinning method and demonstrated their magnetic properties. To investigate the structural, morphological, chemical, and magnetic properties of the samples, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used, as was a vibrating sample magnetometer. The morphology of the nanostructures obtained after calcination at $500^{\circ}C$ exhibited core/shell NWs consisting of $TiO_2$ in the core region and ${\alpha}-Fe_2O_3$ in the shell region. In addition, the XPS results confirmed the formation of Fe-doped $TiO_2$ by the doping effect of $Fe^{3+}$ ions into the $TiO_2$ lattice, which can affect the ferromagnetic properties in the core region. For comparison, pure ${\alpha}-Fe_2O_3$ NWs were also fabricated using an electrospinning method. With regard to the magnetic properties, the Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell NWs exhibited improved saturation magnetization(Ms) of approximately ~2.96 emu/g, which is approximately 6.1 times larger than that of pure ${\alpha}-Fe_2O_3$ NWs. The performance enhancement can be explained by three main mechanisms: the doping effect of Fe ions into the $TiO_2$ lattice, the size effect of the $Fe_2O3_$ nanoparticles, and the structural effect of the core-shell nanostructures.

Effect of Isotropic Strain on Properties of Amorphous Magnetic films (아몰퍼스자성박막의 특성에 미치는 등방성 스트레인의 영향)

  • 신광호;김흥근;김영학;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.478-480
    • /
    • 2001
  • Fe-base amorphous films exhibit large saturation magnetostriction and soft magnetic Properties, which make them suitable for strain sensor applications. Most important material properties for the performance of these elements are the superior soft magnetic properties, such as high permeability and small coercive force, as well as magnetoelastic properties. It is well known that the strain generated in film deposition and/or post-heat treatment processes is one of important material properties, which effects on the soft magnetic properties of the film via magnetoelastic coupling. In this study, the effect of an isotropic strain in plane of magnetic films have been performed experimently. Amorphous films with the composition of (F $e_{90}$ $Co_{10}$)$_{78}$S $i_{l2}$ $B_{10}$ were employed in this study. The film with 5${\mu}{\textrm}{m}$ thick was deposed onto the polyimide substrate with 50${\mu}{\textrm}{m}$ thick by virtue of RF sputtering. The film was subject to post annealing with a static magnetic field with 500Oe magnetic field intensity at 35$0^{\circ}C$ for 1 hour. The polyimide substrate with the film was bonded with an adhesive on PZT piezoelectric substrate with 600${\mu}{\textrm}{m}$ thick in applying voltage of 500V. The change in MH loops of films due to the isotropic strain was measured by using VSM. The coercive force was evaluated from MH loops. It has shown in the results that M-H loops of films are subject to change considerably with a dc voltage, resulting of the magnetization rotation from normal to plane direction as the applied voltage is changed from 500V to 250V.50V.V.

  • PDF