• Title/Summary/Keyword: Magnetic Saturation Effect

Search Result 185, Processing Time 0.02 seconds

Characteristic Analysis of Spiral Type Thin-Film Inductor Using Finite Element Method (유한요소법을 이용한 스파이럴 박막인덕터의 특성해석)

  • Ha, Gyeong-Ho;Hong, Jeong-Pyo;Song, Jae-Seong;Min, Bok-Gi;Kim, Hyeon-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.617-624
    • /
    • 1999
  • The spiral type thin-film inductor performed in high frequency at 2-5[MHz] range is analyzed by 2-dimensional Finite Element Method(2D FEM). The features of micro thin-film inductor have complicated electromagnetic phenomenon such as skin effect, proximity effect and magnetic saturation. To develope miniatured magnetic device considering these features, it is important to predict the property of the thin film inductor according to design parameter. In this paper, we present the 2D FEM analysis for the spiral type thin film inductor. The characteristics of inductor from point of view of inductance, resistance and quality factor are studied according to design parameter and various pattern construction.

  • PDF

A Study of Magnetic Fluid Seals for Blood Sealing

  • Tomioka, Jun;Fukaishi, Akira;Ohba, Takashi
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.373-374
    • /
    • 2002
  • Magnetic fluid seals are used in a wide variety of gas and dust sealing applications. However, it is difficult to seal for liquid because of its characteristic. This study will be a basic guide for a magnetic fluid seal for liquid, especially for blood to be practically used in medical instruments such as rotary blood pumps by clarifying its seal properties. Sealing pressure test, durability test, and hemolysis test have been conducted for this seal. In this study, magnetic fluid, sealing fluid, eccentricity ratio, revolution speed were selected as parameters. As results of the tests, it has been found that the properties of magnetic fluid seal depend on the solvent and the saturation magnetization of magnetic fluid. Therefore, the selection of magnetic fluid is important for this seal. It also has been found that eccentricity ratio of the shaft caused harmful effect for seal properties. In conclusion, it has been showed that magnetic fluid seals could be possibly used in medical instruments such as blood pumps when blood come in contact with magnetic fluids.

  • PDF

Synthesis of $Fe_4N$ Powder and Its Magnetic Properties for Magnetic Recording (자기기록용 $Fe_4N$ 분말의 합성 및 자기특성)

  • 변태봉;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.2
    • /
    • pp.93-100
    • /
    • 1991
  • For determination the optimum manufacturing condition Fe4N powder for magnetic recording media, we have studied the following important conditions : the effect of particle size of metal powder on the nitridation, the condition of nitridation on the formation and magnetic properties of Fe4N, and stability of Fe4N powder against temperature and change on standing. The results can be summarized as : 1) Single phase Fe4N is formed at 50v/o of ammonia concentration during the nitridation reaction, 2) Single phase Fe4N is formed above 40$0^{\circ}C$, 15min regardless of the metal powder sizes, 3) Coercivity and saturation magnetization of Fe4N powder almost constant value until 20 day-passing from preparation date.

  • PDF

Effect of La3+ and Ti4+ Ions on the Magnetic Properties of Barium Hexaferrite Powders Synthesized Using Sol-Gel Method

  • Ertus, Emre Burak;Yildirim, Serdar;Celik, Erdal
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.496-502
    • /
    • 2016
  • Doped and undoped barium hexaferrite powders ($BaFe_{12}O_{19}$, $Ba_{0.7}Ti_{0.3}Fe_{12}O_{19}$ and $Ba_{0.7}La_{0.3}Fe_{12}O_{19}$) were produced by the sol-gel method. The effects of substituting elements were studied in terms of the magnetic properties of barium hexaferrite powders. The magnetic properties were remarkably changed by the substitution of $La^{3+}$ and $Ti^{4+}$ ions for the $Ba^{2+}$ ion and were accompanied by oxygen deficiency in the $BaFe_{12}O_{19}$. Coercivities ($H_C$) from 4200 to 5100 Oe, remanences ($M_R$) from 22 to 49 emu/g and saturation magnetizations ($M_S$) from 41 to 73 emu/g were obtained for different samples. The obtained results were discussed in detail.

Annealing Effect of Co/Pd Multilayers on Magnetic Properties During Interdifusion

  • Kim, Jai-Young;Jan E. Evetts
    • Journal of Magnetics
    • /
    • v.2 no.4
    • /
    • pp.147-156
    • /
    • 1997
  • An artificially modulated magnetic Co/Pd multilayer is one of the promising candidates for high density magneto-optic (MO) recording media, due to a large Kerr rotation angle in the wavelength of a blue laser beam. However, since multilayer structure, as well as amorphous structure, is a non-equilibrium state in terms of free energy and a MO recording technology is a kind of thermal recording which is conducted around Curie temperature (Tc) of the recording media, when the Co/Pd mulilayer is used for the MO recording media, changes in the magnetic properties are occurred as the amorphous structure do. Therefore, the assessment of the magnetic properties in the Co/Pd multilayer during interdiffusion is crucially important both for basic research and applications. As the parameter of the magnetic properties in this research, saturation magnetization and perpendicular magnetic anisotropy energy of the Co/Pd multilayer are measured in terms of Ar sputtering pressure and heat treatment temperature. Form the results of the research, we find out that the magnetic exchange energy between Co and Pd sublayers strongly affects the changes in the magnetic properties of the Co/Pd multilayers during the interdiffusion in ferromagnetic state. This discovery will provide the understanding of the magnetic exchange energy in the Co/Pd multilayer structure and suggest the operating temperature range for MO recording in the Co/Pd multilayer for the basic research and applications, respectively.

  • PDF

Characteristic Analysis and Experimental Verification of the Axially Asymmetric Structured Outer-Rotor Type Permanent Magnet Motor

  • Seo, Myung-Ki;Lee, Tae-Yong;Park, Kyungsoo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.898-904
    • /
    • 2016
  • In this study, we have dealt with a design characteristic of outer-rotor type permanent magnet (PM) motor applied for Engine Cooling Fan (ECF). When we design a motor with structure like this type, it is required as a requisite to consider 3-Dimensional (3-D) effect by implementing a non-linear Finite Element Analysis (FEA) due to a yoke-ceiling, which is perpendicular to the axis of rotation. We have analyzed identical models under three different conditions. The analysis has been performed through a non-linear 2-Dimensional (2-D) and 3-D FEA. Finally, the results have been compared with Back Electro-Motive Force (BEMF) value of actual motor model. As a result, a yoke-ceiling function as an additional flux path and the operating point on B-H curve of rotor material is shifted to non-saturation region relatively. Accordingly, magnetic flux linkage can be increased and motor size can be decreased under same input condition to satisfy ECF specification, such as torque.

Effect of Carrier Gas on the Microstructure and Magnetic Properties of Co Nanoparticles Synthesized by Chemical Vapor Condensation (화학기상응축공정(Chemical Vapor Condensation)으로 제조된 Co 나노분말의 미세구조 및 자기적 성질에 미치는 운송기체의 영향)

  • ;X. L. Dong
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • The nano-sized Co particles were successfully synthesized by chemical vapor condensation (CVC) process using the precursor of cobalt carbonyl ($Co_2(CO)_8$). The influence of carrier gases on the microstructure and magnetic properties of nanoparticles was investigated by means of XRD, TEM, XPS and VSM. The Co nano-particles with different phases and shapes were synthesized with a change of carrier gas : long string morphologies with coexistence of fcc and hcp structure in Ar carrier gas condition; finer Co core in a mass of cobalt oxide with only fcc structure in He; rod type cobalt oxide phase in Ar+6vol%$O_2$. The saturation magnetization and coercivity was lower in Co nanoparticles synthesized in He carrier gas, due to their finer size.

Flux Growth of $CoFe_{1.9}Dy_{0.1}O_4$ Single Crystals and its Magnetic Properties

  • Kambale, Rahul C.;Song, K.M.;Hur, Namjung
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.06a
    • /
    • pp.19-19
    • /
    • 2011
  • We studied the effect of Dy content on the magnetic properties of cobalt ferrite single crystal. The $CoFe_{1.9}Dy_{0.1}O_4$ single crystals were grown by the flux method by using $Na_2B_4O_{7.}10H_2O$ (Borax) as a solvent (flux). The black and shiny single crystals were obtained as a product. The X-ray diffraction test at room temperature confirmed the spinel cubic symmetry with lattice constant a = $8.42{\AA}$ of the single crystals. The presences of constitute elements (Co, Fe and Dy) was endorsedby EDAX analysis. The saturation magnetization (Ms) of $CoFe_{1.9}Dy_{0.1}O_4$ single crystals was measured and is found to be 72emu/g or equivalently $3.2{\mu}B$/f.u. at 300 K. The observed Ms and coercivity (Hc) is found to be lower than that of pure $CoFe_2O_4$.

  • PDF

The Effect of Pinholes on Magnetic Behaviour of Antiferromagnetically Coupled Ni-Fe/Cu Mulitlayers

  • Stobiecki, F;Lucinski, T;Dubowik, J;Szymanski, B;Urbaniak, M;Castano, F.J;Stobiecki, T
    • Journal of Magnetics
    • /
    • v.3 no.3
    • /
    • pp.89-91
    • /
    • 1998
  • The magnetisation behaviour of polycrystalline permalloy/copper multilayers with mixed antiferromagnetic/ferromagnetic coupling was investigated as function of temperature. The results are discussed in a framework of a realistic model of anitferromagnetically coupled layers connected by ferromagnetic pinholes. A microstructure of pinholes (their density and dimensions) was varied either by a proper annealing treatment or by choosing samples with various Cu spacer thicknesses. It was demonstrated that the temperature changes of the net magnetic moment measured in a magnetic field smaller than the saturation field was strongly affected by the composition of the pinholes, their density, cross-sectional area and their lengths.

  • PDF

MHD turbulence in expanding/collapsing media

  • Park, Jun-Seong;Ryu, Dong-Su;Cho, Jung-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.85.2-85.2
    • /
    • 2011
  • We investigate the driven magnetohydrodynamic (MHD) turbulence by including the effect of the expansion and collapse of background medium. The main goal is to quantify the evolution and saturation of the strength and characteristic length scales of magnetic fields in expanding and collapsing media. Our findings are as follows. First, with the expansion and collapse of background medium, the time evolution of the magnetic and kinetic energy densities depends on the nature of forcing as well as the rate of expansion and collapse. Second, at scales close to the energy injection (or driving) scale, the slope of magnetic field power spectrum shallows with expansion but steepens with collapse. Third, various characteristic length scales, relative to the energy injection scale, decrease with expansion but increase with collapse. We discuss the astrophysical implications of our results.

  • PDF