• Title/Summary/Keyword: Magnetic Pulsed Compaction

Search Result 28, Processing Time 0.024 seconds

Consolidation of Thermoelectric Semiconductor Powder by MPC and Their Microstructure (MPC 공정에 의한 열전반도체 분말의 성형 및 미세조직)

  • Han, Tae-Bong;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.525-527
    • /
    • 2008
  • N-Type $SbI_3$-doped $95%{Bi_2}{Te_3}-5%{Bi_2}{Se_3}$ compounds were prepared by a gas atomization and Magnetic Pulsed Compaction process. The dynamic recrystallization and thermoelectric properties of the MPCed bulks with consolidation temperatures and times were investigated by a combination of microscopy, XRD and thermoelectric property testing. The microstructure of MPCed bulk shows homogeneous and fine distribution through consolidated bulks due to dynamic recrystallization during hot MPC. This research presented the challenges toward the successful consolidation of thermoelectric powder using magnetic pulsed compaction (MPC).

  • PDF

Densification of $TiO_2$+Ti powder by Magnetic Pulsed Compaction (자기펄스 성형법에 의한 $TiO_2$+Ti 혼합 분말의 치밀화 거동)

  • Park, J.S.;Kim, H.S.;Lee, J.G.;Rhee, C.K.;Hong, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.394-397
    • /
    • 2008
  • In this research, the fine-structure TiO2+Ti bulks have been fabricated by the combined application of magnetic pulsed compaction (MPC) and subsequent sintering, and their densification behavior was investigated. The obtained density of $TiO_2$+Ti bulk prepared by the combined processes was increased with increasing MPC pressure from 0.7 to 1.7 GPa. Relatively higher density (88%) in the MPCed specimen at 0.7Gpa was attributed to the decreasing of the inter-particle distance of pre-compacted component. High pressure and rapid compaction by Magnetic Pulsed Compaction could reduce shrinkage rate (about 10%) of the sintered bulks compared to that of general processing (about 20%). Mixing conditions of PVA, water, Ti and $TiO_2$ nano powder for compaction of $TiO_2$ nano powder did not affect on density and shrinkage of the sintered bulks due to high pressure of MPC.

  • PDF

Consolidation of Powders by magnetic pulsed compaction (자기펄스 가압 성형장치를 이용한 분말성형)

  • Kim, Jun-Ho;Kim, Hyo-Seob;Koo, Jar-Hyung;Lee, Jeong-Koo;Rhee, Chang-Kyu;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.390-393
    • /
    • 2008
  • In this research, we introduce a new process for the consolidation of different types of powders such as metal and ceramic powders by using a magnetic pulsed compaction (MPC). The successful consolidation of many kinds of powers including nanopowder by MPC has been presented. A wide range of experimental studies were carried out for characterizing mechanical properties and microstructure of the MPCed materials. It was found that effective properties of high strength and full density maintaining nanoscal microstructure were achieved. finally, optimization of the compaction parameters and sintering conditions could lead to the good consolidation of powders (metal, ceramic, nano-powder) with higher density, and even further enhanced mechanical properties.

  • PDF

Fabrication of Ceramic Dental Block by Magnetic Pulsed Compaction (자기펄스압축성형장치를 이용한 대면적 지르코니아 덴탈블록 제조 연구)

  • Park, Hyo-Young;Kim, Hyo-Seob;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.373-378
    • /
    • 2012
  • Sintered bulks of $ZrO_2$ nanopowders were fabricated by magnetic pulsed compaction (MPC) and subsequent two-step sintering employed in this study and the formability effects of nanopowder on mixing condition, pressure and sintering temperature were investigated. The addition of PVA induced and increase in the formability of the sintered bulk. But cracked bulks were obtained on sintering with addition of over 10 wt% PVA due to generation of crack during sintering. The optimum compaction pressure during MPC was 1.0 GPa and mixing conditions included using 5.0 wt% PVA. The optimum processing condition included MPC process, followed by two-step sintering (first at 1000 and then at $1450^{\circ}C$). The sintered bulks with the diameter of 30 mm under these conditions were found to have non crack, ~99% density.

Fabrication of Nanostructured Alumina by the Combined Processes of Magnetic Pulsed Compaction (MPC) and Spark Plasma Sintering (SPS) (자기펄스성형법 및 통전가압소결법의 연속공정을 이용한 고밀도 나노 알루미나 세라믹의 제조)

  • Lee, J. K.;Hong, S. J.;Lee, M. K.;Rhee, C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.5 s.52
    • /
    • pp.345-350
    • /
    • 2005
  • In this study the nanostructured ${\alpha}-Al_{2}O_3$ ceramics have been fabricated by the combined application of magnetic pulsed compaction (MPC) and subsequent spark plasma sintering (SPS), and their density and hardness properties were investigated. The ${\alpha}-Al_{2}O_3$ prepared by the combined processes showed an increase by $8.4\%$ in density, approaching the value close to the true density, and an enhancement by $210\~400\;Hv$ in hardness, compared to those fabricated by MPC or static compaction method followed by sintering treatment.

Microstructure and Mechanical Property of Ti-Mn-Cu Alloys with Magnetic Pulsed Compaction (자기펄스성형이 적용된 Ti-Mn-Cu 합금의 미세구조 및 기계적 특성)

  • Yun, Ye Jun;Park, Chun Woong;Choi, Won June;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.20-24
    • /
    • 2021
  • Ti-based alloys are widely used in biomaterials owing to their excellent biocompatibility. In this study, Ti-Mn-Cu alloys are prepared by high-energy ball milling, magnetic pulsed compaction, and pressureless sintering. The microstructure and microhardness of the Ti-Mn-Cu alloys with variation of the Cu addition and compaction pressure are analyzed. The correlation between the composition, compaction pressure, and density is investigated by measuring the green density and sintered density for samples with different compositions, subjected to various compaction pressures. For all compositions, it is confirmed that the green density increases proportionally as the compaction pressure increases, but the sintered density decreases owing to gas formation from the pyrolysis of TiH2 powders and reduction of oxides on the surface of the starting powders during the sintering process. In addition, an increase in the amount of Cu addition changes the volume fractions of the α-Ti and β-Ti phases, and the microstructure of the alloys with different compositions also changes. It is demonstrated that these changes in the phase volume fraction and microstructure are closely related to the mechanical properties of the Ti-Mn-Cu alloys.

Consolidation of Segment Powder for Diamond Tool by Magnetic Pulsed Compaction (자기펄스 압축성형법에 의한 다이아몬드 공구용 세그먼트 분말 성형)

  • Yun, J.S.;Lee, J.G.;Lee, M.K.;Rhee, C.K.;Park, M.S.;Hong, S.J.
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.378-385
    • /
    • 2008
  • This article presents the successful consolidation of the mixed Co and Diamond powders for a drilling segment by the combined application of magnetic pulsed compaction (MPC) and subsequent sintering, and their properties were analyzed. Homogeneous hardness (Hv 220) and density (97%) of sintered bulks fabricated by MPC were obtained by the new technique, where higher pressure has been employed for short period of time than that of general process. A fine microstructure and homogeneous hardness in the consolidated bulk were observed without cracks. Relatively higher drilling speed of 9.61 cm/min and life time of 6.55 m were found to the MPCed specimens, whereas the value of the specimens fabricated by general process was 11.71 cm/min and 7.96 m, respectively. A substantial improvement of mechanical properties of segment was achieved through this study.

Microstructure and Characteristics of Ag-SnO2 Contact Materials Prepared by Magnetic Pulsed Compaction (자기펄스 압축성형법으로 성형된 Ag-SnO2 접점소재의 미세조직 및 특성)

  • Park, J.S.;Kim, Y.J.;Lee, M.H.;Lee, H.S.;Hong, S.J.;Lee, J.K.
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.372-377
    • /
    • 2011
  • In this study, we reported the microstructure and properties of Ag-$SnO_2$ contact materials fabricated by a controlled milling process with subsequent consolidation. The milled powders were consolidated to bulk samples using a magnetic pulsed compaction process. The nano-scale $SnO_2$ phases were distributed homogeneously in the Ag matrix after the consolidation. The relative density and hardness of the Ag-$SnO_2$ contact materials were 95~96% and 89~131 Hv, respectively.

Microstructure and Characteristics of Ag-SnO2-Bi2O3 Contact Materials by Powder Compaction (분말성형법으로 제조된 Ag-SnO2-Bi2O3 접점소재의 미세조직 및 특성)

  • Lee, Jin Kyu
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.41-46
    • /
    • 2022
  • In this study, we report the microstructure and characteristics of Ag-SnO2-Bi2O3 contact materials using a controlled milling process with a subsequent compaction process. Using magnetic pulsed compaction (MPC), the milled Ag-SnO2-Bi2O3 powders have been consolidated into bulk samples. The effects of the compaction conditions on the microstructure and characteristics have been investigated in detail. The nanoscale SnO2 phase and microscale Bi2O3 phase are well-distributed homogeneously in the Ag matrix after the consolidation process. The successful consolidation of Ag-SnO2-Bi2O3 contact materials was achieved by an MPC process with subsequent atmospheric sintering, after which the hardness and electrical conductivity of the Ag-SnO2-Bi2O3 contact materials were found to be 62-75 HV and 52-63% IACS, respectively, which is related to the interfacial stability between the Ag matrix, the SnO2 phase, and the Bi2O3 phase.

Nozzles from Alumina Ceramics with Submicron Structure Fabricated by Radial Pulsed Compaction

  • Kaygorodov, Anton;Rhee, Chang;Kim, Whung-Whoe;Ivanov, Viktor;Paranin, Sergey;Spirin, Alexey;Khrustov, Vladimir
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.368-369
    • /
    • 2006
  • By means of magnetic pulsed compaction and sintering of weakly aggregated alumina based nanopowders the jet forming nozzle samples for the hydroabrasive cutting were fabricated. The ceramics was obtained from pure alumina, as well as from alumina, doped by $TiO_2$, MgO and AlMg. It was shown that the samples sintered from AlMg doped $Al_2O_3$ powder have the best mechanical properties and structural characteristics: relative density ${\sim}0.97$, channel microhardness. - 18-20 GPa, channel surface roughness ${\sim}0.7\;{\mu}m$, average crystallite size ${\sim}1\;{\mu}m$.

  • PDF