• Title/Summary/Keyword: Magnetic Path

Search Result 205, Processing Time 0.029 seconds

A Method for Reducing Path Tracking Errors of an AGV with a Trailer (대차가 있는 무인 운반차의 경로 추종 오차 감소 방법)

  • Lee, Ji Young;Sung, Young Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.132-138
    • /
    • 2014
  • The use of AGVs(Automated Guided Vehicles) are increasing in many factories. The most widely used AGV system is that magnetic tapes are attached on the factory floor to make guided path and an AGV equipped with a magnetic sensor follows the path by sensing magnetic flux. In this AGV system, usually a magnetic sensor is attached on the front end of an AGV to detect the guided path and the sensor generates analog voltages proportional to the magnetic flux. The problem is that the AGV in use has rather big tracking errors because the accurate orientation of the AGV can not be detected by using only one magnetic sensor. In this paper, we propose a method to minimize the path tracking errors. In our method, one additional sensor is attached on the rear end of the AGV to estimate the orientation of the AGV and to control more accurately the AGV according to the estimated orientation of the AGV. We performed several experiments and the results successfully show the feasibility of the proposed method.

The design of magnetic circuit of magnetostrictive actuator using finite element method (유한 요소 해석을 통한 자기변형 구동기 자기 회로 설계)

  • 이석호;박영우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.548-551
    • /
    • 2004
  • Magnetostrictive actuators have seen increasing use in fine positioning system because it has many advantages such as friction free, resolution of ${\mu}{\textrm}{m}$ or nm scale, and powerful output force. Usually, the magnetic circuit of magnetostrictive actuator has components which are flux return path, coil, and magnetostrictive material. It is classified in two types according to existence of the permanent magnet. The magnetic circuit having optimal performances transfer magnetic field which is obtained by providing input current at coil without energy loss. This paper described mathematical model of magnetic circuit for getting design variables. The modeling equation is obtained from the relations between flux and reluctance of the magnetic equivalent circuit. Also, finite element analysis has been used to study the performance of magnetic circuit according to change of design variables such as existence and shape of the permanent magnet, flux return path etc. The modification of dimensions enables us to optimize magnetic circuit.

  • PDF

Design and Analysis of A Mini Linear Optical Pickup Actuator

  • Park, Joon-Hyuk;Baek, Yoon-Su;Park, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1616-1627
    • /
    • 2003
  • This paper describes a mini linear optical pickup actuator. To reduce the size, inner yokes are designed to guide the mover and outer yokes of permanent magnets are removed. Magnetic circuit method is used to determine the thrust force. Virtual path method is proposed to analyze the open magnetic circuit analysis. The magnetic circuit of the proposed actuator can be a closed circuit due to the virtual path model of the outer magnetic flux. The validity of virtual path method is evaluated by comparing to the FEM analysis. Structural vibration is investigated using FEM and the design of the mover is modified to improve the vibration characteristic. Dynamic characteristic experiments shows that the performance of the proposed actuator is enough to be used as a coarse and fine seeking actuator simultaneously and the thrust force margin for loading a focusing actuator is guaranteed.

Analysis of Magnetic Flux Path and Static Thrust Force of the Double-Side Linear Pulse Motor (양측식 리니어 펄스 모터의 자로와 정특성 해석)

  • Kim, Seong-Jong;Lee, Eun-Ung;Kim, Seong-Heon;Kim, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.493-498
    • /
    • 2002
  • Double-side linear pulse motor(DSLPM) has more advantages than single-side linear pulse motor because noise and vibration can be considerably decreased by countervailing the normal forces, which is generated between two stators and mover. However, DSLPM has more complicated magnetic flux path and layout of stator pole toot/mover tooth rather than single-side linear pulse motor In this paper, DSLPM is designed and fabricated by considering the air gap magnetic density, shape of tooth and slot. In order to verify the characteristics of DSLPM, the air gap magnetic flux density is analyzed by 2D FEM and the magnetic flux path is analyzed by 3D FEM. Also the static thrust forces is obtained with the analyzed results.

Installation Effects on the Characteristics of Multi-path Ultrasonic Flowmeter with Valve (밸브후단에서의 다회선 초음파 유량계의 특성변화)

  • Hwang, S. Y.;Seo, K. H.;Kim, B. C.;Kim, K. S.;Tyan, H. S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.65-74
    • /
    • 2000
  • A five path ultrasonic and/or magnetic flowmeter were installed after valve. Five path ultrasonic flowmeter were tested to obtain it's performance in a water flow standard system and magnetic flowmeter. It's varied with straight pipe length(nD), install direction and valve position. All the results are summerized. The multi-path flowmeters(MUF) showed up to $\pm0.5{\%}$ at a 2, 4, 8, 15D spacing : the MUF was significantly better than magnetic flowmeter at disturbed flow conditions.

  • PDF

Tool-Path Optimization of Magnetic Abrasive Polishing Using Heuristic Algorithm (휴리스틱 알고리즘을 이용한 평면 자기연마 공구경로 최적화)

  • Kim, Sang-Oh;You, Man-Hee;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.174-179
    • /
    • 2011
  • This paper focuses on the optimal step-over value for magnetic tool path. Since magnetic flux density is changed according to distance from center of magnetic tool. Enhanced surface roughness is also different according to change of radius. Therefore, to get a identical surface roughness on workpiece, it is necessary to find optimal tool path including step-over. In this study, response surface models for surface roughness according to change of radiuses were developed, and then optimal enhanced surface roughness for each radius was selected using genetic algorithm and simulated annealing to investigate relation between radius and surface roughness. As a result, it found that step-over value of 6.6mm is suitable for MAP of magnesium alloy.

Magnet Gear with Two-Axial Magnetic Paths (이축 방향의 복합 자기 경로를 갖는 마그네트 기어)

  • Kim, Moon Su;Jung, Kwang Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.543-550
    • /
    • 2014
  • A magnet gear composed of two layers of permanent magnets repeated circumferentially can transmit the power without mechanical contact. In the topology called by the magnet shutter gear known as the most competitive concept among the existing concepts, the number of pole-pairs on the high speed rotor corresponds to that of low speed rotor through electric steel set functioning as a magnetic modulator. The methodology is classified into radial type and axial type according to its magnetic path as in the motor. However, the magnetic modulator has multiple poles located separately. So, it is very complicated to assemble each module of the magnet gear mechanically and to sustain a mechanical stiffness of the modulator. The practical trouble can be solved partially through reconfiguring the modules. This paper deals with the novel magnetic shutter gear topology varying the magnetic path and its effectiveness is verified through real hardware implementation.

Axial magnetic gear with a closed magnetic path (자기 폐회로를 갖는 축형 마그네틱 기어)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.726-733
    • /
    • 2017
  • A magnetic shutter gear is a device that transfers mechanical power by synchronizing the magnetic field between permanent magnet layers facing circumferentially through a harmonic modulator. However, magnetic gears uses many rare-earth permanent magnets to guarantee comparable torque density to that of mechanical reducer. Hence, we propose a novel axial magnetic gear with a dramatically reduced number of permanent magnets and a closed magnetic path. The torque of the system was compared to that of an existing shutter gear through a harmonic analysis of the air-gap magnetic field. The modulator thickness and open ratio were considered as the primary design parameters, and the cogging effect was analyzed for variation of the reduction ratio. A dynamic model between the high-speed side and low-speed side was derived, and position control was performed for a constructed hardware implementation.

Parameter Design of The Magnet Gear with A Closed Magnetic Path (자기 폐회로를 갖는 마그네트 기어의 변수 설계)

  • Jung, Kwangsuk
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.7-12
    • /
    • 2015
  • A novel topology for the magnet gear is proposed in this study. Differently from the existing methods, both sides of magnet array in this topology are used, resulting in increasing the efficiency of the mechanism. The closed magnetic path between the magnetic elements decreases the leakage flux, so the interlinking magnetic flux through the air-gap is focused and intensified. This paper discusses the dominant parameters of the proposed magnet gear influencing the resulting transmission torque. The parameters are designed from the sensitivity analysis using the commercial FEM analysis tool. And, the test setup for verifying the performance of the system is described.

Observation of bubble dynamics under water in high-magnetic fields using a high-speed video camera

  • Lee, Seung-Hwan;Minoru Takeda
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.291-298
    • /
    • 2004
  • The observations of rapid motion of bubbles under water for approximately 50 ms or less in high-magnetic fields of 10 T have been carried out successfully for the first time. The observation system constructed is composed of a high-speed video camera, a telescope, a cryostat with a split-type superconducting magnet, a light source, a mirror and a transparent sample cell. Using this system, the influence of magnetic field on the path and shape of single bubbles of O$_2$ (paramagnetism) and N$_2$ (diamagnetism) has been examined carefully. Experimental values describing the path are in good agreement with theoretical values calculated on the basis of the magneto-Archimedes effect, despite the effect of magnetism on the bubble. However, no effect of magnetism on the shape of the bubble is observed. In addition, the influence of magnetic field on drag coefficient of the bubble is discussed.

  • PDF