• Title/Summary/Keyword: Magnetic Metal Films

Search Result 106, Processing Time 0.022 seconds

Formation of Crystalline Copper Thin Films by a Sputtering-assisted Magnetic Field System at Room Temperature

  • Kim, Hyun Sung
    • Applied Science and Convergence Technology
    • /
    • v.27 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • A sputtering-assisted magnetic field system was successfully developed for depositing crystalline Cu thin films at room temperature. This system employs a plasma source and an ion-beam gun with two magnetic field generators, which is covered with sputtering target and the ion-beam gun, simultaneously serving as sputtering plasma and a magnetic field generator. The formation of crystalline Cu thin films at room temperature was dominated by magnetic fields, which was revealed by preliminary experiments. This system can be employed for producing crystalline metal thin films at room temperature.

A Study of Magnetic Field Annealing on Microstructures and Magnetic Properties of Nanocomposite Sm-Co/Co Films

  • Yang, Choong-Jin;You, Cai-Yin;Zhang, Z.D.;Kim, Kyung-Soo;Han, Jong-Soo
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.45-50
    • /
    • 2002
  • A magnetic field annealing is firstly used for nanostructured Sm-Co/Co films, prepared by magnetron sputtering method. The effects of magnetic field annealing on single-layered Sm-Co films are different from those on multi-layered Sm-Co/Co films. A detailed analysis of microstructures and magnetic properties is made by means of HRTEM, Auger electron spectroscopy, XRD and Physical Property Measurement System (PPMS). From magnetic properties and microstructure analysis, it was confirmed that these differences originate from the effects of magnetic field annealing on crystallization behavior of the films. The relationship between magnetic properties and microstructures explains a different demagnetization process of single-layered and multilayered films. For the single-layered Sm-Co films, magnetic-field-annealing makes the main phases change from $CaCu_5/ to Zn_2Th_{17}$ structure, resulting in a decrease of coercivity. The results show that the magnetic-field-annealing is useful to improve the properties of nanostructured Sm-Co(30 nm)/Co(10 nm) films, which ascribe to improving the pinning effectiveness in coercivity mechanism and decreasing the magnetostatic interaction of films. A very high coercivity about 0.7 T was obtained from nanoscaled multi-layered Sm-Co(30 nm)-/Co(10 nm) films.

Liquid Phase Deposition of Transition Metal Ferrite Thin Films: Synthesis and Magnetic Properties

  • Caruntu Gabriel;O'Connor Charles J.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.703-709
    • /
    • 2006
  • We report on the synthesis of highly uniform, single phase zinc and cobalt thin films prepared by the Liquid Phase Deposition (LPD) method. X-Ray diffraction, TGA and EDX measurements support the assumption that the as deposited films are constituted by a mixture of crystallized FeOOH and amorphous M(OH)$_2$ (M=Co, Zn) which is converted upon heat treatment in air at 600?C into the corresponding zinc ferrites. The films with adjustable chemical compositions are identified with a crystal structure as spinel-type and present a spherical or rod-like microstructure, depending on the both the nature and concentration of the divalent transition metal ions. Zinc ferrite thin films present a superparamagnetic behavior above blocking temperatures which decrease with increasing the Zn content and are ferromagnetic at 5 K with coercivities ranging between 797.8 and 948.5 Oe, whereas the cobalt ferrite films are ferromagnetic at room temperature with magnetic characteristics strongly dependent on the chemical composition.

Structure and Magnetic Properties of Sm-Co(x nm)/Co(6 nm) Multi-layered Nanocomposite Films

  • Yang, Choong-Jin;You, Cai-Yin;Zhang, Zhi-Dong
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.24-25
    • /
    • 2002
  • Tthe structure and magnetic properties of Sm-Co/co films treated at various annealing temperatures and times are reported, The effects of an externally applied magnetic field during annealing, were also investigated. These result is discussed in terms of magnetization reversal of nano grains which seems to compete with the exchange interaction occurring between the nano grains. (omitted)

  • PDF

Effects of structure and morphology of anodized Al thin film on magnetic properties (알루미늄 양극산화 피막의 구조 및 형상이 자기적 특성에 미치는 영향)

  • 권용덕;박용수
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.2
    • /
    • pp.45-54
    • /
    • 1993
  • In this study, magnetic properties of anodized Al film deposited with ferro-magnetic metals in the capacity of perpendicular magnetic recording media were measured and evaluated to find out the role of structure and morphology of the oxide films on magnetic characteristics. The object of this work was to present the conditions of magnetic thin film formation with more superior magnetic property. Anodizing was carried out under various conditions, and then the anodized film were electro-deposited with Co, Ni, Fe and their alloys. Coercive force and residual magnetization in perpendicular direction increased as the pore length of anodized film increased. It was attributed to the increase of the amount of depoisted metals and the ratio of length/diameter of pores. Morphology of anodized films in phosperic acid was not similar to that of sulfuric acid, and thin films in the former solution had perpendcular magnetic anisostropy because of large diameter, irregular length and distribution of the pores. It was found that magnetic properties of the thin films, which had doubled layer of two metals, were dominated by the metal electrodeposited on the surface of the anodized oxide films.

  • PDF

Properties and Structure of High Frequency Soft Magnetic Nano-composite Films

  • Ohnuma, Shigehiro;Masumoto, Hiroshi
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.403-407
    • /
    • 2011
  • Metal-insulator type, nano-granular soft magnetic films have been reviewed from the viewpoint of high frequency magnetic materials. The formation of nano-granular structure is related to the magnitude of heat of formation of intergranule materials. Variation of the ratio of granule phase to intergranule phase in the film is found to produce various characteristics in the magnetic properties of the film. The HRTEM observation reveals that neighboring granules in the film with above 60 at.% Co, contact at considerable points and the films show soft magnetic properties which are explainable in terms of the random anisotropy model for nano-crystalline materials. Addition of Ni group elements in Co-O based films enhances their anisotropy field up to 400 Oe and they exhibit excellent frequency response of permeability. Also, large electromagnetic noise suppression effect is demonstrated as one of their potential applications.

Magnetic Properties of Multilayered and Mixed $Pr_{0.65}$Ca_{0.35}MnO_3/La_{0.7}Sr_{0.3}MnO_3$ Films

  • V. G. Prokhorov;Lee, Y. P.;V. S. Flis;Park, J. S.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.67-69
    • /
    • 2003
  • The magnetic properties of single- and poly-crystalline $La_{0.7}Sr_{0.3}MnO_3/Pr_{0.65}Ca_{0.35}MnO_3$ multilayered (ML) films, and composite (CP) $(La_{0.7}Sr_{0.3})_{0.5}(Pr_{0.65}Ca_{0.35}_{0.5}MnO_3$ films, prepared by laser ablation, have been investigated in a wide temperature range. It was shown that the transformation from an incoherent to a coherent interface in the ML films leads to an enhancement of the ferromagnetic coupling between layers and to a single-phase magnetic transition. The amorphous CP films demonstrate a paramagnetic behavior of the magnetization with a sharp peak at $T_{G}\approx$45 K, which was interpreted as the formation of Griffiths phase. A short-term annealing at $750^{\circ}C$ induced the complete crystallization of film, and a recovery of the ferromagnetic and the metal-insulator transitions.

Comparative analysis of the magnetic and the transport properties of electron- and hole-doped manganite films

  • Kim, K.W.;Prokhorov, V.G.;Flis, V.S.;Park, J.S.;Eom, T.W.;Lee, Y.P.;Svetchnikov, V.L.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.226-226
    • /
    • 2010
  • Microstructure, magnetic and transport properties of as-deposited electron-doped $La_{1-x}Ce_xMnO_3$ and hole-doped $La_{1-x}Ce_xMnO_3$ films prepared by pulse laser deposition, with x = 0.1 and 0.3, have been investigated. The microstructural analysis reveals that the $La_{1-x}Ce_xMnO_3$ films have a column-like microstructure and a strip-domain phase with a periodic spacing of about 3c, which were not found for the $La_{1-x}Ce_xMnO_3$ ones. At the same time, the experimental results manifest that there is no fundamental difference in the magnetic and the transport properties between electron- and hole-doped manganite films, except the appearance of ferromagnetic response in the low-doped $La_{0.9}Ce_{0.1}MnO_3$ film at temperatures above the Curie point. The observed magnetic behavior, typical for the Griffiths-like phase, for this film is explained by the percolation mechanism of the ferromagnetic transition and by the presence of strip-domain phase which stimulates the magnetic phase separation.

  • PDF

Structure of Ti and Al Films Prepared by Cylindrical Sputtering System (원통형 스퍼터링 장치로 제작한 Ti 및 Al 박막구조)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.344-350
    • /
    • 2014
  • Metal films (i.e., Ti, Al and SUH310S) were prepared in a magnetron sputtering apparatus, and their cross-sectional structures were investigated using scanning electron microscopy. The apparatus used consisted of a cylindrical metal target which was electrically grounded, and two anode rings attached to the top and to the bottom of the target. A wire was placed along the center-line of the cylindrical target to provide a substrate. When the electrical potential of the substrate was varied, the metal-film formation rate depended on both the discharge voltage and the electrical potential of the substrate. As we made the magnetic field stronger, the plasma which appeared near the target collected on the plasma wall surface and thereby decreased the bias current. The bias current on the conducting wire was different from that for cation collection. The bias current decreased because the collection of cations decreased when we increased the magnetic-coil current. When the substrate was electrically isolated, the films deposited showed a slightly coarse columnar structure with thin voids between adjacent columns. In contrast, in the case of the grounded substrate, the deposited film did not show any clear columns but instead, showed a densely-packed granular structure. No peeling region was observed between the film and substrate, indicating good adhesion.

Micro-patterning of Multi-layered Magnetic Metal Films Using Nd:YAG Laser (Nd:YAG Laser를 이용한 자성금속 막의 패턴 식각)

  • Chae, Sang-Hun;Seo, Yeong-Jun;Song, Jae-Seong;Min, Bok-Gi;An, Seung-Jun;Lee, Ju-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.171-174
    • /
    • 2000
  • In this study, the laser patterning of sputter-deposited amorphous CoNbZr films has been tried usig Nd: YAG laser. However, the metal film was not removed because of its high reflectance of the alser on the metal surface. To solve this problem, authors tried to screen-print a block polymer on the metal film and then irradiate the laser on the polymer. This is a new method which was suggested by this study. Using this new method, the metal films were effectively removed with the laser power of 114W even though the metal films was not removed with the laser power of 332W using the conventional method. This result leads to the conclusion that the block polymer acts as a laser energy absorbing and transferring layer.

  • PDF