TTP-088

Comparative analysis of the magnetic and the transport properties of electronand hole-doped manganite films

<u>K. W. Kim</u>¹, V. G. Prokhorov², V. S. Flis², J. S. Park³, T. W. Eom³, Y. P. Lee³, V.L. Svetchnikov⁴

¹Dept. of Information Display, Sunmoon University, ²Inst. of Metal Physics, Ukraine, ³q-Psi and Dept. of Physics, Hanyang University, ⁴National Center for HREM, Netherlands

Microstructure, magnetic and transport properties of as-deposited electron-doped La_{1-x}Ce_xMnO₃ and hole-doped La_{1-x}Ca_xMnO₃ films prepared by pulse laser deposition, with x = 0.1 and 0.3, have been investigated. The microstructural analysis reveals that the La_{1-x}Ce_xMnO₃ films have a column-like microstructure and a strip-domain phase with a periodic spacing of about 3*c*, which were not found for the La_{1-x}Ca_xMnO₃ ones. At the same time, the experimental results manifest that there is no fundamental difference in the magnetic and the transport properties between electron- and hole-doped manganite films, except the appearance of ferromagnetic response in the low-doped La_{0.9}Ce_{0.1}MnO₃ film at temperatures above the Curie point. The observed magnetic behavior, typical for the Griffiths-like phase, for this film is explained by the percolation mechanism of the ferromagnetic transition and by the presence of strip-domain phase which stimulates the magnetic phase separation.