• Title/Summary/Keyword: Magnetic Levitation System

Search Result 281, Processing Time 0.029 seconds

Linear Induction Motor for Magnetic Levitation Vehicle (자기부상열차용 선형 유도전동기)

  • Kim Jeong-Cheol;Park Yeong-Ho;Kim Dae-Kwang;Choi Jong-Mook
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.220-224
    • /
    • 2005
  • EMU(Electric Multiple Unit) operated in local area is mostly consist of moving system on the rail and the traction motor drives the gear and wheel with the mechanical propulsion force. Most of countries are interested in Magnetic Levitation Vehicle for the transportation system on next generation and they have been studying about it continuously. Thus this paper is studied the Linear Induction Motor as the propulsion equipment of Magnetic Levitation Vehicle

  • PDF

Air-gap Disturbance Attenuation of Magnetic Levitation Systems using Discrete Kalman Filter (이산형 칼만필터를 이용한 자기부상시스템의 공극외란 감쇄)

  • 성호경;정병수;장석명
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.7
    • /
    • pp.444-451
    • /
    • 2004
  • Conventional magnetic levitation systems could show unsatisfactory performance under air-gap disturbance due to rail irregularities. In this paper, we propose a feedback control system with discrete Kalman filter for air-gap disturbance attenuation. It is shown that excellent system performance can be obtained with the use of discrete Kalman filter, and that results from experiments agree well with those of simulations.

A Study on the Optimal Design, Modeling and Control of the Multi d.o.f Precision Positioning System Using Magnetic Levitation Actuating Principle (자기 부상 방식 구동원리를 이용한 다자유도 정밀 위치 시스템의 최적 설계, 모델링 및 제어에 관한 연구)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.779-787
    • /
    • 2001
  • The multi degree of freedom system using magnetic levitation has been implemented successfully. Differently from another noncontact systems, the developed system was focused on the maximization of the system stiffness under the constraint of a limited input. The variation of a relative adopting point between the magnetic pair, its location on the fixed base, and the selection of optimal specifications for the main active magnetic elements give us another chance to realize the increased robustness against external disturbances with the less control inputs. In this paper, the overall development procedures are given including the optimal design, the dynamic modeling, the various control tests, and the main issues to be solved.

Superconducting magnetic Foce (초전도에 작용하는 자기 Force)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.349-350
    • /
    • 2009
  • Superconducting magnetic bearing and rotating system were developed by utilizing the high magnetization YBaCuO superconductor. The pellets prepared by quasi-melt process had a high magnetic levitation force and a high magnetic attractive force. The shaft also could be moves its position and orientation of the rotating axis freely. Is is essential to enhance the materials properties and to improve the system design for the application of the system to industrial purpose.

  • PDF

Design of Digital Controller for the Levitation of Variable Steel Balls by using Magnetic Levitation System (자기부상 시스템을 이용한 임의의 금속구 부상을 위한 디지털제어기 설계)

  • Sa, Young-Ho;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1940-1942
    • /
    • 2001
  • Magnetic Levitation System(MLS) levitates a steel ball to the desired position in the gravity field using electromagnetic force. MLS consists of light sensor to measure the position of steel ball and an electromagnet to control the position of the ball, that composes a feedback control system. This work does not use a steel ball with constant mass but variable mass steel balls as magnetic levitation targets. Differential equation of electric circuit for electromagnet and motion equation of the movement of steel ball are derived for modeling nonlinear system, that will be linearized at the nominal operating point. We propose a digital control that can levitate a steel ball of which weight is not known for ED-4810 system. Algorithm for estimating ball weight and feedback control are implemented in digital scheme under pentium PC equiped with A/D and D/A converter, ACL-8112, using C-language. Simulation and experimental results are given to show the usefulness of the proposed controller.

  • PDF

Zero Power Levitation Control of Controlled-PM Electromagnet Levitation System by Reduced Order Extended State Observer (최소차원 확장형 상태관측기에 의한 제어형 영구자석 자기 부상 시스템의 제로전력 부상 제어)

  • Kim, Youn-Hyun;Kim, Sol;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.515-521
    • /
    • 2002
  • This paper presents the scheme that improves control responsibility and stability of the controlled-PM electromagnet levitation system with zero Power controller. A magnetically levitation system is used widely because friction can almost be disappeared. But it is difficult to control due to restraint of controllable area and nonlinear characteristics of electromagnetic force, which is proportioned to a square of the magnetic flux density and is in inverse proportion to a square of the air-gap. So, the application of observer theory in which the levitation system is considered to be a linear dynamic model has resulted in omitting the time dependence on mover's speed. Consequently, the performance of the observer is quite poor during transients. Therefore, this paper proposed the controlled-PM electro-magnetic levitation control method in which the variable load is estimated by using the reduced order extended luenverger observer and its system is controlled at a new zero power equilibrium air-gap position. It is also verified that the proposed control method improve the control performance through simulation and experiment.

Levitation Control Circuit Design for a Magnetic Levitation System Supplied with a Battery (배터리로 구동되는 자기부상시스템의 부상제어회로 설계)

  • Nam, Yun-Ho;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.27-29
    • /
    • 2004
  • In this paper, a levitation control circuit for a magnetic levitation system supplied with a battery is designed. The control circuit consists of DSP, 4-quadrant chopper, and gap sensor as feedback sensors. Moreover the DSP includes PWM generator, A/D converter, etc. The feedback signals from gap sensors go into A/D converter of DSP to compare with reference. As a result, The design procedures of the levitation control circuit and battery power distribution system are described and basic experiment results are shown.

  • PDF

Clean Lifter Design Using Magnetic Levitation System (자기부상을 이용한 클린 리프터 설계)

  • Kim, Jong-Moon;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1171-1173
    • /
    • 2005
  • This paper presents a clean lifter design using a magnetic levitation system. Electromagnets are used as a levitation magnet attached to the clean lifter. The lateral forces are generated by the magnets so that non-contacting bearings are implemented. The clean lifter design specifications are suggested and the overall system is described.

  • PDF

Characteritic Analysis of Hybrid Levitation and Propulsion System for Super-Speed Maglev (초고속 자기부상열차를 위한 하이브리드형 부상 추진 시스템의 특성 해석)

  • Cho, Han-Wook;Lee, Jong-Min;Han, Hyung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.623_624
    • /
    • 2009
  • This paper deals with the characteristic analysis of electro-magnet (EM)-permanent magnet (PM) hybrid levitation and propulsion device for magnetically levitated (maglev) vehicles. Several machine characteristics such as levitation force with/without control current and thrust are described. In order to verify the analysis results and feasibility of high-speed operation of the maglev vehicle, real-scale static test set is implemented and tested.

  • PDF

Control of a magnetic levitation system via feedback error learning

  • Hao, Shuang-Hui;Yang, Zi-Jiang;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.345-350
    • /
    • 1993
  • This paper presents an on-line feedback error learning control algorithm for a magnetic levitation system. It will be shown that even in the case of abrupt changes of the system parameters and disturbanes, the control performance is still very satisfactory.

  • PDF