• Title/Summary/Keyword: Magnetic Head

Search Result 502, Processing Time 0.028 seconds

Primary non-Hodgkin lymphoma of the parotid gland: a case report

  • Ryoo, Hyun Jung;Lim, Jin Soo;Kim, Min Cheol
    • Archives of Craniofacial Surgery
    • /
    • v.23 no.3
    • /
    • pp.125-129
    • /
    • 2022
  • Most malignant lymphomas of the head and neck region are non-Hodgkin lymphomas (NHL), and diffuse large B-cell lymphoma is the most common subtype. The prevalence of malignant lymphoma among parotid tumors is low, approximately 1% to 4%. The most common symptom of parotid lymphoma is a unilateral, non-tender, firm mass that slowly grows in size over time. As its clinical manifestations are nonspecific, a comprehensive assessment is required for an accurate diagnosis. The initial work-up includes imaging tools, such as computed tomography and magnetic resonance imaging. However, NHL of the parotid gland is difficult to distinguish from other types of benign tumors prior to biopsy; histopathological evaluation and subsequent immunohistochemical staining are needed for the final diagnosis. Once a definitive diagnosis is established, patients should be referred to an oncologist for staging. Treatment is mainly based on systemic chemotherapy, whereas radiotherapy is indicated for certain cases. Here, we report the case of a 53-year-old man who presented with a progressively enlarging mass in the right parotid area, which was later diagnosed as malignant lymphoma of the parotid gland after superficial parotidectomy.

Unrecognized bony Bankart lesion accompanying a dislocated four-part proximal humerus fracture before surgery: a case report

  • Lee, Seungjin;Shin, Daehun;Hyun, Yoonsuk
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.1
    • /
    • pp.68-72
    • /
    • 2022
  • Proximal humerus fractures are the third most common fractures, totaling 4% to 5% of all fractures. Here, we present the case of a 39-year-old man with a dislocated four-part fracture of the proximal humerus with a huge bony Bankart lesion. Preoperatively, the bony Bankart lesion of the glenoid was not visualized on computed tomography scans or magnetic resonance imaging because the fracture of the proximal humerus was comminuted, displaced, and complex. It was planned for only the humerus fracture to be treated by open reduction and internal fixation using a locking plate. However, a fractured fragment remained under the scapula after reduction of the dislocated humeral head. This was mistaken for a dislocated bone fragment of the greater tuberosity and repositioning was attempted. After failure, visual confirmation showed that the bone fragment was a piece of the glenoid. After reduction and fixation of this glenoid part with suture anchors, we acquired a well-reduced fluoroscopic image. Given this case of complex proximal humerus fracture, a glenoid fracture such as a bony Bankart lesion should be considered preoperatively and intraoperatively in such cases.

A Study on a Dual Electromagnetic Sensor System for Weld Seam Tracking of I-Butt Joints

  • Kim, J.-W.;Shin, J.-H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.51-56
    • /
    • 2002
  • The weld seam tracking system for arc welding process uses various kinds of sensors such as arc sensor, vision sensor, laser displacement sensor and so on. Among the variety of sensors available, electro-magnetic sensor is one of the most useful methods especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fume generated during the welding process, and also by the surface condition of weldments. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation of the metal near the sensor, was developed for arc welding of sheet metal I-butt joints. The dual-electromagnetic sensor thus detects the offset displacement of weld line from the center of sensor head even though there's no clearance in the joint. A set of design variables of the sensor was determined far the maximum sensing capability through the repeated experiments. Seam tracking is performed by correcting the position of sensor to the amount of offset displacement every sampling period. From the experimental results, the developed sensor showed the excellent capability of weld seam detection when the sensor to workpiece distance is near less than 5 ㎜, and it was revealed that the system has excellent seam tracking ability for the I-butt joint of sheet metal.

  • PDF

Transient postoperative inferior subluxation of the shoulder after surgical stabilization of recurrent anterior dislocation in a patient with myasthenia gravis: a case report

  • Samuel Baek;Geum-Ho Lee;Myung Ho Shin;Tae Min Kim;Kyung-Soo Oh;Seok Won Chung
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.3
    • /
    • pp.302-305
    • /
    • 2023
  • The authors present a case of transient postoperative inferior subluxation of the shoulder after arthroscopic surgical stabilization for recurrent anterior dislocation. The patient was a 61-year-old woman with myasthenia gravis (MG). The first anterior shoulder dislocation occurred because of a fall to the ground. Despite a successful closed reduction, two more dislocations occurred in 3 weeks. Magnetic resonance imaging revealed an anterior labroligamentous periosteal sleeve avulsion (ALPSA) lesion, an engaging Hill-Sachs lesion, and large tears of the supraspinatus and infraspinatus tendons. The patient underwent arthroscopic rotator cuff repair and ALPSA repair with a remplissage procedure. Intraoperatively, no tendency for instability was found; however, a widened glenohumeral joint space and inferior subluxation of the humeral head without functional compromise was observed on the day after surgery and disappeared spontaneously on radiographs 2 weeks later. To the authors' knowledge, this is the first report documenting the occurrence of transient postoperative inferior subluxation of the shoulder in a patient with MG.

Difference of working memory according to academic achievement with college students: functional Magnetic Resonance Imaging (대학생의 학업성취도에 따른 시각적 작동 기억 차이: 기능적 자기공명영상법)

  • Hong, Jae-Ran;Hwang, Jung-Ha;Kim, Eun-Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.3
    • /
    • pp.173-182
    • /
    • 2012
  • It was well known that working memory highly related with academic achievement. The aim of this study was to investigate the differences of brain activation which visually evoked working memory(encoding and retrieval) through functional Magnetic Resonance Imaging(fMRI) in Higher Academic Achievement Group(HAAG) and Lower Academic Achievement Group(LAAG) of college students. 20 assigned college students participated in fMRI studies. They underwent totally 210 seconds repeated paradigm. Stimulation paradigm composed with resting time and encoding and retrieval seeing the figures from the mirror with head coil. The brain activation maps and their quantification were analyzed by the statistical parametric mapping(SPM99) program from level of significance 95%. HAAG was more significantly higher than LAAG in bilateral prefrontal lobe(brodmann 46) associated with working memory, inferior parietal lobe associated with attention, and visual association area in encoding figures test. Right dosoprefrontal lobe(BA 44), right fusiform gyrus associated with decision of figure and, lingual gyrus were more activated in retrieval test with HAAG. On the other hand, LAAG was more significantly higher than HAAG in cingulate gyrus during encoding test. Thalamus, basal ganglia, cerebellum were more activated in retrieval test. Consequently, We could guess from these results HAAG more effectively executed than LAAG in visual working memory test.

Depiction of Acute Stroke Using 3-Tesla Clinical Amide Proton Transfer Imaging: Saturation Time Optimization Using an in vivo Rat Stroke Model, and a Preliminary Study in Human

  • Park, Ji Eun;Kim, Ho Sung;Jung, Seung Chai;Keupp, Jochen;Jeong, Ha-Kyu;Kim, Sang Joon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • Purpose: To optimize the saturation time and maximizing the pH-weighted difference between the normal and ischemic brain regions, on 3-tesla amide proton transfer (APT) imaging using an in vivo rat model. Materials and Methods: Three male Wistar rats underwent middle cerebral artery occlusion, and were examined in a 3-tesla magnetic resonance imaging (MRI) scanner. APT imaging acquisition was performed with 3-dimensional turbo spin-echo imaging, using a 32-channel head coil and 2-channel parallel radiofrequency transmission. An off-resonance radiofrequency pulse was applied with a Sinc-Gauss pulse at a $B_{1,rms}$ amplitude of $1.2{\mu}T$ using a 2-channel parallel transmission. Saturation times of 3, 4, or 5 s were tested. The APT effect was quantified using the magnetization-transfer-ratio asymmetry at 3.5 ppm with respect to the water resonance (APT-weighted signal), and compared with the normal and ischemic regions. The result was then applied to an acute stroke patient to evaluate feasibility. Results: Visual detection of ischemic regions was achieved with the 3-, 4-, and 5-s protocols. Among the different saturation times at $1.2{\mu}T$ power, 4 s showed the maximum difference between the ischemic and normal regions (-0.95%, P = 0.029). The APTw signal difference for 3 and 5 s was -0.9% and -0.7%, respectively. The 4-s saturation time protocol also successfully depicted the pH-weighted differences in an acute stroke patient. Conclusion: For 3-tesla turbo spin-echo APT imaging, the maximal pH-weighted difference achieved when using the $1.2{\mu}T$ power, was with the 4 s saturation time. This protocol will be helpful to depict pH-weighted difference in stroke patients in clinical settings.

Acute Occlusal Change Following Acute Anterior Disc Displacement without Reduction: A Case Report (급성 비정복성 관절원판 변위에 따른 급성 교합변화의 증례)

  • Jung, Jae-Kwang;Hur, Yun-Kyung;Choi, Jae-Kap
    • Journal of Oral Medicine and Pain
    • /
    • v.37 no.4
    • /
    • pp.205-211
    • /
    • 2012
  • A 35 year-old female presented with the complaint of sudden occurrence of bite change and concurrent opening limitation, as well as pain in the right temporomandibular joint (TMJ) during mouth opening. From her history it was revealed that she had simple clicking of right TMJ for several years before onset of these symptoms, and that the clicking sound subsided recently after development of opening limitation. On clinical examination, anterior open bite, midline shift of the mandible to right, and premature contacts on left posterior teeth were observed. Maximum mouth opening and lateral movement to left were also restricted. On magnetic resonance images, the right TMJ showed anterior disc displacement without reduction and the posterior joint space is greatly collapsed by retrusion of the condyle. It was thought that the sudden occurrence of occlusal change would be resulted from abrupt displacement of the mandible associated with development of the anterior disc displacement without reduction. The stabilization appliance traction therapy was performed initially for first 3 months along with physical and pharmacologic therapy. However, the anterior open bite and opening limitation didn't resolve and the position of mandible still remained altered. So the stabilization appliance was changed to intermaxillary traction device. Then the mandible returned progressively to normal position and the occlusion became more stable and comfortable. After 5 months of intermaxillary traction therapy, the anterior open bite was dissolved completely and the occlusion became stabilized satisfactorily along with recovery of normal mouth opening range. On post-treatment magnetic resonance image, remodeling of condylar head was observed.

Structural and Functional Changes of Hippocampus in Long Life Experienced Taxi Driver (오랜 운전경험을 가진 택시운전기사들의 해마의 구조와 기능적 변화에 대한 MRI연구)

  • You, Myung-Won;Lee, Dong-Kyun;Lee, Jong-Min;Kim, Sun-Mi;Ryu, Chang-Woo;Kim, Eui-Jong;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.2
    • /
    • pp.124-135
    • /
    • 2012
  • Purpose : The objective of this study was to investigate the differences of hippocampal volume and shape as well as the functional change between long life experienced taxi drivers and controls of Korean population. Materials and Methods: Three-dimensional T1-weighted images and blood oxygen level dependent functional MRI(fMRI) were obtained from 8 subjects, consisting of 4 experienced (20-30 years) taxi drivers and 4 age-matched controls. The hippocampal volume and shape were analyzed with three-dimensional T1-weighted images. In addition, neuronal activities of brain were analyzed using a blood oxygen level dependent fMRI between the two groups. Results: The hippocampal volume showed no statistically significant difference between the two groups (p > 0.05). The left hippocampi of the taxi drivers were slightly elongated with larger head and tail portions than those of the controls (p < 0.05, uncorrected). For the functional MRI, fusiform gyrus was specifically activated in taxi drivers, compared with the control group. Conclusion: The structural and functional changes of taxi driver's hippocampus indicate the functional differentiation as a result of occupational dependence on spatial navigation. In other words, the continuous usage of spatial navigation performance may diminish degeneration of hippocampus and the related brain regions.

Analysis of in vitro 2D-COSY on Human Brain Metabolites for Molecular Stereochemistry

  • Kim, Sang-Young;Woo, Dong-Cheol;Bang, Eun-Jung;Kim, Sang-Soo;Lim, Hyang-Sook;Choi, Chi-Bong;Choe, Bo-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.1
    • /
    • pp.14-25
    • /
    • 2008
  • To investigate the 3-bond connectivity of human brain metabolites by scalar coupling interaction through 2D-correlation spectroscopy (COSY) techniques using high field NMR spectroscopy. All NMR experiments were performed at 298K on Unity Inova 500 or 600 (Varian Inc.) equipped with a triple resonance probe head with z-shield gradient. Human brain metabolites were prepared with 10% $D_2O$. Two dimensional 2D COSY spectra were acquired with 4096 complex data points in $t_2$ and 128 or 256 increments in $t_1$ dimension. The spectral width was 9615.4 Hz and solvent suppression was achieved using presaturation using low power irradiation of the water resonance during 2s of relaxation delay. NMR data were processed using VNMRJ (Varian Instrument) software and all the chemical shifts were referenced to the methyl resonance of N-acetyl aspartate (NAA) peak at 2.0 ppm. Total 10 metabolites such as N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), glutamine (Gln), glutamate (Glu), myo-inositol (Ins), lactate (Lac), taurine (Tau), ${\gamma}$-aminobutyricacid (GABA), alanine (Ala) were included for major target metabolites. Symmetrical 2D-COSY spectra were successfully acquired. Total 14 COSY cross peaks were observed even though there were parallel/orthogonal noisy peaks induced by water suppression. Except for Cr, all of human brain metabolites produced COSY cross peaks. The spectra of NAA methyl proton at 2.02 ppm and Glu methylene proton ($CH_2(3)$) at 2.11 ppm and Gln methylene proton ($CH_2(3)$) at 2.14 ppm were overlapped in the similar resonance frequency between 2.00 ppm and 2.15 ppm. The present study demonstrated that in vitro 2D-COSY represented the 3-bond connectivity of human brain metabolites by scalar coupling interaction. This study could aid in better understanding the interactions between human brain metabolites in vivo 2D-COSY study. Also it would be helpful to determine the molecular stereochemistry in vivo by using two-dimensional MR spectroscopy.

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF