• Title/Summary/Keyword: Magnetic Fields

Search Result 1,465, Processing Time 0.024 seconds

Distribution characteristics of a solar-surface magnetic field in the recent four solar cycles

  • Magara, Tetsuya;An, Junmo;Lee, Hwanhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.47.1-47.1
    • /
    • 2018
  • Solar cycles are inherent to the Sun, which experiences temporal changes in its magnetic activity via the surface distribution of the solar magnetic field. This raises a fundamental question of how to derive the distribution characteristics of a solar-surface magnetic field that are responsible for individual solar cycles. We present a new approach to deriving as long-term and large-scale distribution characteristics of this quantity as was ever obtained; that is, we conducted a population ecological analysis of Wilcox Solar Observatory (WSO) Synoptic Charts which provide a more than 40-year time series of latitude-longitude maps of solar-surface magnetic fields. In this approach, solar-surface magnetic fields are assumed as hypothetical trees with magnetic polarities (magnetic trees) distributed on the Sun. Accordingly, we identified a peculiarity of cycle 23 with a longer period than an average period of 11 years; specifically we found that the negative surface magnetic field had much more clumped distributions than the positive surface magnetic field during the first one-third of this cycle, while the latter was dominant over the former. The Sun eventually spent more than one-third of cycle 23 recovering from these imbalances.

  • PDF

A Ferromagnetic Shimming Method for NMR Magnet Using Linear Programming (리니어 프로그래밍을 이용한 NMR 마그넷의 수동 자장보정 방법)

  • Lee, Sang-Jin;Hahn, Seung-Yong;Sim, Ki-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1059-1063
    • /
    • 2010
  • Shimming is an important technique in development of nuclear magnetic resonance (NMR) magnets where image resolution is highly dependent on magnetic field homogeneity. Classically, shimming may be categorized into two types: 1) active shimming that incorporates with extra coils and precise tuning of their currents; and 2)passive shimming that incorporates with pieces of steel placed in a bore of a main magnet and their uniform magnetization under homogeneous external fields. Additional magnetic fields, produced by the coils and/or the steel sheets, compensate original magnetic field from the main magnet in such a way that the total field becomes more homogeneous. In this paper, we developed a passive shimming method based on linear programming optimization. Linear programming is well known to be highly efficient to find a global minimum in various linear problems. We firstly confirmed the linearity of magnetization of ferromagnetic pieces under a presence of external magnetic fields. Then, we adopted the linear programming to find optimized allocation of the steel pieces in the inner bore of a main magnet to improve field homogeneity.

Calculation of Trajectory for High Energy Electrons in Water under Strong Magnetic Fields (강자기장이 인가된 물 속에서 고에너지 전자의 궤적 계산)

  • Kim Jeung Kee;Oh Young Kee;Shin Kyo Chul;Kim Ki Hwan;Kim Jhin Kee;Kim Sung Kyu;Ro Tae Ik;Kim Jin Young;Ji Young Hun;Jeong Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.121-127
    • /
    • 2004
  • The trajectories for high-energy electrons in water under magnetic fields were calculated approximately by numerical method. A differential equation for electrons under magnetic field was built and the calculation code was devised by Euler method. Using the code, the trajectories for electrons with energies of 3, 5, 10, and 15 MeV in water were calculated in the presence of magnetic fields parallel and perpendicular to the incident electrons. Since we considered only the energy loss and the directional change for primary electrons, there are errors in this calculation. However, based on the results we were able to explain the variation of dose distributions by the external magnetic fields in water.

  • PDF

A Study on Magnetic Field Reduction Design Technique around 345 kV Transmission Line with 2-wire Set Passive Loop (2선식 수동루프를 이용한 345[kV] 송전선 주변의 자계저감 설계기법 연구)

  • Kim, Eung Sik
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.10-17
    • /
    • 2021
  • The controversy over the risk of the human body being affected by electromagnetic fields emitted from 60 Hz power lines continues without end. There are currently no new studies or research progress being made in this direction that is notable, and the number of civil complaints is gradually increasing. The problem is that each study produces different results, among which the effect of exposure to magnetic fields on childhood leukemia is a major one. In Korea, an electrician who was maintaining a 22.9 kV power line died of leukemia, which has recently been recognized as an occupational disease. Methods to reduce magnetic fields from power lines include shielding with wire loops, incorporating split phases and compaction techniques, installing underground power lines, converting to high-voltage direct current (HVDC), and increasing the ground clearance of transmission towers. Depending on whether a separate power supply is needed or not, there are two types of wire loops: passive loop and active loop. Magnetic field reduction is currently done through underground power lines; however, the disadvantage of this process is high construction costs. Installing passive loops, with relatively low construction costs, leads to lower magnetic field reduction rates than installing underground cables and a weakness to not solving the landscape problem. This methodological study aims at designing methods and reducing the effects of 2-wire set loops-the simplest and most practical. Since the method proposed in this study has been designed after analyzing the distribution of complex electromagnetic fields near the expected loop installation location, a practical design can be implemented without the need for any difficult optimization programming.

Thermal Stability of a Nanostructured Exchange-coupled Trilayer (나노구조 교환결합 삼층박막의 열적 안정성 예측)

  • Lee, Jong-Min;Lim, S.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • A recent progress on the prediction of the thermal stability of a nanostructured exchange-coupled trilayer is reviewed. An analytical/numerical combined method is used to calculate its magnetic energy barrier and hence the thermal stability parameter. An important feature of the method is the use of an analytical equation for the total energy that contains the magnetostatic fields. Under an assumption of the single domain state, the effective values of all the magnetostatic fields can be obtained by averaging their nonuniform values over the entire magnetic volume. In an equilibrium state, however, it is not easy to calculate the magnetostatic fields at the saddle point due to the absence of suitable methods of the accessing its magnetic configuration. This difficulty is overcome with the use of equations that link the magnetostatic fields at the saddle point and critical fields. Since the critical fields can readily be obtained by micromagnetic simulation, the present method should provide accurate results for the thermal stability of a nanostructured exchange-coupled trilayer.

Cellular Risk Assessment of Cells Exposed to Extremely Low Frequency Electromagnetic Fields (극저주파 자기장 노출에 의한 세포 유해성 평가)

  • Kang, Heungsik;Lee, Seongpyo;Noh, Myunggyu;Kim, Ki-Jung;Kim, Keekwang
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.207-214
    • /
    • 2021
  • Humans are environmentally exposed to various electromagnetic fields, but the evaluation of the harmfulness of electromagnetic field and the development of a system therefor are still incomplete. We aimed to develop a system for evaluating biohazard against electromagnetic fields, and to determine biohazard through the system. An extremely-low frequency magnetic field generator was designed and manufactured, and the output reliability of the device was verified. Using this device, the effect on the formation of cellular stress-granules and the cell cycle progression of cells exposed to high magnetic fields of 6 mT and 60 Hz was confirmed. As a result, exposure to high magnetic fields of 6 hr, 12 hr and 36 hr did not affect the formation of cell stress-induced granules and the cell division cycle. These results are an important basis for the determination of biohazard to the extremely-low frequency high magnetic field.

A Numerical Analysis on the Heat Transfer Characterristics of Magnetic Fluid in a Rectangular Enclosure (자성유체의 밀폐공간내 열전달특성에 관한 수치적 연구)

  • Ryu Shin-Oh;Park Myung-Ho;Park Gil-Moon;Park Joung-Woo;Seo Lee-Soo;Chen Chel-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.37-43
    • /
    • 2003
  • Natural convection of a magnetic fluid is different from that of Newtonian fluids because a magnetic body force exists in an addition to gravity and buoyancy forces. In this paper, the natural convection of a magnetic fluids (W-40) in a rectangular enclosure is investigated by numerical and experimental methods. One side wall is kept at a constant temperature ($25^{\circ}C$), and the opposite side wall is also kept at a constant temperature ($20^{\circ}C$), Under above conditions, the magnitude of the magnetic fields were varied and applied. GSMAC scheme is used for the numerical method, and the thermo-sensitive liquid crystal film (R20C5A) is utilized in order to visualize wall-temperature distributions as an experimental verification. This study has resulted in the following fact that the natural convection of a magnetic fluid is controlled by the direction and intensity of the magnetic fields.

Viscosity and Turbulence Dynamo in the Intracluster Medium

  • Cho, Jungyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2015
  • The origin of magnetic fields in the intracluster medium (ICM) is uncertain: it can be either primordial or astrophysical. Turbulence plays important roles in the origin of magnetic fields in the ICM. This is because turbulence can amplify a weak seed magnetic field very efficiently. The efficiency of the turbulence dynamo critically depends on the magnitude of viscosity: the smaller the viscosity is, the more efficient the turbulence dynamo is. In this talk, I'll discuss turbulence dynamo in both very small viscosity limit and very large viscosity limit. I'll show that when the viscosity in the ICM is comparable to the Spitzer viscosity, the origin of magnetic field in the ICM is likely to be astrophysical. On the other hans, when the viscosity is much smaller than the Spitzer value, the origin of magnetic field can be either astrophysical or primordial.

  • PDF

A Study on the Exposure Assessment of Extremely Low Frequency Magnetic Fields (극저주파 자계의 노출 평가에 대한 연구)

  • Kim, Eung-Sik;Kim, Myeong-Hun;Min, Suk-Won
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • This paper addresses the assessment methods used to evaluate the magnetic exposure of a human to ELF EMF (Extremely Low Frequency Electromagnetic Field) which is caused by the process of power delivery from 60 Hz commercial power. These days the main concern is primarily focused on the magnetic field. For the exposure assessment, both numerical studies and laboratory experiments were studied and the results of the two compared for methodological suitability. The numerical analyses employ the Impedance Method (IM), Boundary Element Method (BEM), and Finite Element Method (FEM) and the laboratory experiments used various human phantom models made with conductivities congruent to human organs and then exposed to uniform/non-uniform magnetic fields to produce eddy currents. Under these conditions a number of examples have been evaluated and the reliability assessed to present the pros and cons of each methodology.