• Title/Summary/Keyword: Magnetic Fields

Search Result 1,463, Processing Time 0.027 seconds

Factors Related to Successful Energy Transmission of Focused Ultrasound through a Skull : A Study in Human Cadavers and Its Comparison with Clinical Experiences

  • Jung, Na Young;Rachmilevitch, Itay;Sibiger, Ohad;Amar, Talia;Zadicario, Eyal;Chang, Jin Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.6
    • /
    • pp.712-722
    • /
    • 2019
  • Objective : Although magnetic resonance guided focused ultrasound (MRgFUS) has been used as minimally invasive and effective neurosurgical treatment, it exhibits some limitations, mainly related to acoustic properties of the skull barrier. This study was undertaken to identify skull characteristics that contribute to optimal ultrasonic energy transmission for MRgFUS procedures. Methods : For ex vivo skull experiments, various acoustic fields were measured under different conditions, using five non-embalmed cadaver skulls. For clinical skull analyses, brain computed tomography data of 46 patients who underwent MRgFUS ablations (18 unilateral thalamotomy, nine unilateral pallidotomy, and 19 bilateral capsulotomy) were retrospectively reviewed. Patients' skull factors and sonication parameters were comparatively analyzed with respect to the cadaveric skulls. Results : Skull experiments identified three important factors related skull penetration of ultrasound, including skull density ratio (SDR), skull volume, and incidence angle of the acoustic rays against the skull surface. In clinical results, SDR and skull volume correlated with maximal temperature (Tmax) and energy requirement to achieve Tmax (p<0.05). In addition, considering the incidence angle determined by brain target location, less energy was required to reach Tmax in the central, rather than lateral targets particularly when compared between thalamotomy and capsulotomy (p<0.05). Conclusion : This study reconfirmed previously identified skull factors, including SDR and skull volume, for successful MRgFUS; it identified an additional factor, incidence angle of acoustic rays against the skull surface. To guarantee successful transcranial MRgFUS treatment without suffering these various skull issues, further technical improvements are required.

Superconducting properties of MgB2 superconductors in-situ processed using various boron powder mixtures

  • Kang, M.O.;Joo, J.;Jun, B.H.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.45-50
    • /
    • 2021
  • In this study, the effect of the size of B powder on the critical current density (Jc) of MgB2 prepared by an in situ reaction process was investigated. Various combinations of B powders were made using a micron B, ball-milled B and nano B powders. Micron B powder was reduced by ball milling and the milled B powder was mixed with the micron B or nano B powder. The mixing ratios of the milled B and micron or nano B were 100:0, 50:50 and 0:100. Non-milled micron B powder was also mixed with nano powder in the same ratios. Pellets of (2B+Mg) prepared with various B mixing ratios were heat-treated to form MgB2. Tc of MgB2 decreased slightly when the milled B was used, whereas the Jc of MgB2 increased with increasing amount of the milled B or the nano powder. The used of the milled B and nano B power promoted the formation MgB2 during heat treatment. In addition to the enhanced formation of MgB2, the use of the powders reduced the grain size of MgB2. The use of the milled and nano B powder increased the Jc of MgB2. The highest Jc was achieved when 100% nano B powder was used. The Jc enhancement is attributed to the high volume fraction of the superconducting phase (MgB2) and the large grain boundaries, which induces the flux pinning at the magnetic fields.

Corrosion visualization under organic coating using laser ultrasonic propagation imaging

  • Shi, Anseob;Park, Jinhwan;Lee, Heesoo;Choi, Yunshil;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.301-309
    • /
    • 2022
  • Protective coatings are most widely used anticorrosive structures for steel structures. The corrosion under the coating damages the host material, but this damage is completely hidden. Therefore, a field-applicable under-coating-corrosion visualization method has been desired for a long time. Laser ultrasonic technology has been studied in various fields as an in situ nondestructive inspection method. In this study, a comparative analysis was carried out between a guided-wave ultrasonic propagation imager (UPI) and pulse-echo UPI, which have the potential to be used in the field of under-coating-corrosion management. Both guided-wave UPI and pulse-echo UPI were able to successfully visualize the corrosion. Regarding the field application, the guided-wave UPI performing Q-switch laser scanning and piezoelectric sensing by magnetic attachment exhibited advantages owing to the larger distance and incident angle in the laser measurement than those of the pulse-echo UPI. Regarding the corrosion visualization methods, the combination of adjacent wave subtraction and variable time window amplitude mapping (VTWAM) provided acceptable results for the guided-wave UPI, while VTWAM was sufficient for the pule-echo UPI. In addition, the capability of multiple sensing in a single channel of the guided-wave UPI could improve the field applicability as well as the relatively smaller size of the system. Thus, we propose a guided-wave UPI as a tool for under-coating-corrosion management.

Changes of Blood pH in Micro-circulation System on the Stimulated Time of Pulsed Magnetic Fields (펄스자기장 자극 시간에 따른 미세순환시스템 내에서 혈액의 pH변화)

  • Lee, Boram;Choi, Yukyung;Lee, Hyunsook
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.214-218
    • /
    • 2022
  • The purpose of this study was to investigate the role of the PMF in the treatment of acidosis and inflammation by monitoring the pH change for the continuity of PMF effect on the blood in the micro-circulation system that mimics the capillaries in the human body. Micro-tubes and micro-channels similar in diameter to those of arteries and arterioles were fabricated using PDMS and connected to a micro-pump for blood circulation. The continuity of PMF effect was verified in a micro-circulation system in-vitro. The pH changes for the circulating blood and for persistence time of PMF stimulus effect were confirmed using the optimized PMF conditions based on the previous studies. Also pH changes were observed by continuously stimulating PMF for a set period of time. The result was observed that the pH of the blood acidified using tBHP continued to rise from immediately after stimulation of PMF to 70 minutes of stimulation, reaching a normal pH range, and then decreasing. Our study showed that PMF has a positive effect on the control of blood pH homeostasis, so it is suggested the possibility of being used as a noninvasive treatment for acidosis treatment and anti- inflammatory treatment.

Simulation of a neutron imaging detector prototype based on SiPM array readout

  • Mengjiao Tang;Lianjun Zhang;Bin Tang;Gaokui He;Chang Huang;Jiangbin Zhao;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3133-3139
    • /
    • 2023
  • Neutron imaging technology as a means of non-destructive detection of materials is complementary to X-ray imaging. Silicon photomultiplier (SiPM), a new type of optical readout device, has overcome some shortcomings of traditional photomultiplier tube (PMT), such as high-power consumption, large volume, high price, uneven gain response, and inability to work in strong magnetic fields. Its application in the field of neutron detection will be an irresistible general trend. In this paper, a thermal neutron imaging detector based on 6LiF/ZnS scintillation screen and SiPM array readout was developed. The design of the detector geometry was optimized by geant4 Monte Carlo simulation software. The optimized detector was evaluated with a step wedge sample. The results show that the detector prototype with a 48 mm × 48 mm sensitive area can achieve about 38% detection efficiency and 0.26 mm position resolution when using a 300 ㎛ thick 6LiF/ZnS scintillation screen and a 2 mm thick Bk7 optical guide coupled with SiPM array, and has good neutron imaging capability. It provides effective data support for developing high-performance imaging detectors applied to the China Spallation Neutron Source (CSNS).

Effects of $BaCO_3$ purity on the superconducting properties of top seeded melt growth processed $Y_{1+x}Ba_2Cu_3O_y$ superconductors

  • Choi, J.S.;Park, S.D.;Jun, B.H.;Han, Y.H.;Sung, T.H.;Choo, K.N.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.7-10
    • /
    • 2009
  • Effects of $BaCO_3$ purity on the superconducting properties of top seeded melt growth (TSMG) processed $Y_{1+x}Ba_2Cu_3O_{7-y}$ (Y1+x, x=0.1 and 0.2) superconductors were investigated. $YBa_2Cu_3O_{7-y}$ (Y123) powder prepared using $BaCO_3$ with 99.75% purity and commercially available Y123 powder of 99.9% were used for the fabrication of single Y123 grain superconductors. $T_c$ values of the Y1+x samples prepared using low purity Y123 powder were slightly lower than those of the samples prepared using a high purity powder. In addition to the lower $T_c$, an anomalous peak effect in the intermediate magnetic fields was observed in Y1+x samples prepared using the low purity $BaCO_3$ powder. The slight decrease in $T_c$ and the anomalous peak effect are ascribed to the possible incorporation of a Y123 phase with impurity elements such as strontium and calcium included in the $BaCO_3$powder of 99.7%. The result suggests that the low purity $BaCO_3$ powder of a low price can be used as a raw power for the fabrication of single grain YBCO bulk superconductors.

Effect of Aligned Steel Fibers by a Solenoid on Flexural Fracture Behavior (솔레노이드에 의해 정렬된 강섬유가 휨파괴 거동에 미치는 영향)

  • Gyu-Pil Lee;Do-Young Moon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.193-200
    • /
    • 2023
  • This paper investigates the effect of directional alignment of steel fibers using an electromagnetic field on the flexural fracture behavior of steel fiber reinforced concrete. A specially designed and manufactured solenoid, capable of aligning steel fibers in the longitudinal direction of the beam specimen, was employed for this purpose. Beam specimens with a design strength of 30 MPa were produced, and failure tests were conducted on specimens exposed to electromagnetic fields and those without exposure. Experimental variables included the mixing ratio and aspect ratio of steel fibers. The results of the experiments revealed a slight increase in flexural strength and crack mouth opening displacement at the maximum load for specimens exposed to the electromagnetic field. Notably, a significant enhancement in fracture energy was observed.

A Simulation Study on Transcranial Direct Current Stimulation Using MRI in Alzheimer's Disease Patients (알츠하이머병 환자의 MRI를 활용한 경두개 직류 전기 자극 시뮬레이션에 관한 연구)

  • Chae-Bin Song;Cheolki Lim;Jongseung Lee;Donghyeon Kim;Hyeon Seo
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.377-383
    • /
    • 2023
  • Purpose: There is increasing attention to the application of transcranial direct current stimulation (tDCS) for enhancing cognitive functions in subjects to aging, mild cognitive impairment (MCI), and Alzheimer's disease (AD). Despite varying treatment outcomes in tDCS which depend on the amount of current reaching the brain, there is no general information on the impacts of anatomical features associated with AD on tDCS-induced electric field. Objective: The objective of this study is to examine how AD-related anatomical variation affects the tDCS-induced electric field using computational modeling. Methods: We collected 180 magnetic resonance images (MRI) of AD patients and healthy controls from a publicly available database (Alzheimer's Disease Neuroimaging Initiative; ADNI), and MRIs were divided into female-AD, male-AD, female-normal, and male-normal groups. For each group, segmented brain volumes (cerebrospinal fluid, gray matter, ventricle, rostral middle frontal (RMF), and hippocampus/amygdala complex) using MRI were measured, and tDCS-induced electric fields were simulated, targeting RMF. Results: For segmented brain volumes, significant sex differences were observed in the gray matter and RMF, and considerable disease differences were found in cerebrospinal fluid, ventricle, and hippocampus/amygdala complex. There were no differences in the tDCS-induced electric field among AD and normal groups; however, higher peak values of electric field were observed in the female group than the male group. Conclusions: Our findings demonstrated the presence of sex and disease differences in segmented brain volumes; however, this pattern differed in tDCS-induced electric field, resulting in significant sex differences only. Further studies, we will adjust the brain stimulation conditions to target the deep brain and examine the effects, because of significant differences in the ventricles and deep brain regions between AD and normal groups.

Optimize KNN Algorithm for Cerebrospinal Fluid Cell Diseases

  • Soobia Saeed;Afnizanfaizal Abdullah;NZ Jhanjhi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Medical imaginings assume a important part in the analysis of tumors and cerebrospinal fluid (CSF) leak. Magnetic resonance imaging (MRI) is an image segmentation technology, which shows an angular sectional perspective of the body which provides convenience to medical specialists to examine the patients. The images generated by MRI are detailed, which enable medical specialists to identify affected areas to help them diagnose disease. MRI imaging is usually a basic part of diagnostic and treatment. In this research, we propose new techniques using the 4D-MRI image segmentation process to detect the brain tumor in the skull. We identify the issues related to the quality of cerebrum disease images or CSF leakage (discover fluid inside the brain). The aim of this research is to construct a framework that can identify cancer-damaged areas to be isolated from non-tumor. We use 4D image light field segmentation, which is followed by MATLAB modeling techniques, and measure the size of brain-damaged cells deep inside CSF. Data is usually collected from the support vector machine (SVM) tool using MATLAB's included K-Nearest Neighbor (KNN) algorithm. We propose a 4D light field tool (LFT) modulation method that can be used for the light editing field application. Depending on the input of the user, an objective evaluation of each ray is evaluated using the KNN to maintain the 4D frequency (redundancy). These light fields' approaches can help increase the efficiency of device segmentation and light field composite pipeline editing, as they minimize boundary artefacts.

Applications of Artificial Intelligence in MR Image Acquisition and Reconstruction (MRI 신호획득과 영상재구성에서의 인공지능 적용)

  • Junghwa Kang;Yoonho Nam
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.6
    • /
    • pp.1229-1239
    • /
    • 2022
  • Recently, artificial intelligence (AI) technology has shown potential clinical utility in a wide range of MRI fields. In particular, AI models for improving the efficiency of the image acquisition process and the quality of reconstructed images are being actively developed by the MR research community. AI is expected to further reduce acquisition times in various MRI protocols used in clinical practice when compared to current parallel imaging techniques. Additionally, AI can help with tasks such as planning, parameter optimization, artifact reduction, and quality assessment. Furthermore, AI is being actively applied to automate MR image analysis such as image registration, segmentation, and object detection. For this reason, it is important to consider the effects of protocols or devices in MR image analysis. In this review article, we briefly introduced issues related to AI application of MR image acquisition and reconstruction.