• 제목/요약/키워드: Magnetic Barrier

검색결과 163건 처리시간 0.019초

Blood-Brain Barrier Disruption in Mild Traumatic Brain Injury Patients with Post-Concussion Syndrome: Evaluation with Region-Based Quantification of Dynamic Contrast-Enhanced MR Imaging Parameters Using Automatic Whole-Brain Segmentation

  • Heera Yoen;Roh-Eul Yoo;Seung Hong Choi;Eunkyung Kim;Byung-Mo Oh;Dongjin Yang;Inpyeong Hwang;Koung Mi Kang;Tae Jin Yun;Ji-hoon Kim;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • 제22권1호
    • /
    • pp.118-130
    • /
    • 2021
  • Objective: This study aimed to investigate the blood-brain barrier (BBB) disruption in mild traumatic brain injury (mTBI) patients with post-concussion syndrome (PCS) using dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging and automatic whole brain segmentation. Materials and Methods: Forty-two consecutive mTBI patients with PCS who had undergone post-traumatic MR imaging, including DCE MR imaging, between October 2016 and April 2018, and 29 controls with DCE MR imaging were included in this retrospective study. After performing three-dimensional T1-based brain segmentation with FreeSurfer software (Laboratory for Computational Neuroimaging), the mean Ktrans and vp from DCE MR imaging (derived using the Patlak model and extended Tofts and Kermode model) were analyzed in the bilateral cerebral/cerebellar cortex, bilateral cerebral/cerebellar white matter (WM), and brainstem. Ktrans values of the mTBI patients and controls were calculated using both models to identify the model that better reflected the increased permeability owing to mTBI (tendency toward higher Ktrans values in mTBI patients than in controls). The Mann-Whitney U test and Spearman rank correlation test were performed to compare the mean Ktrans and vp between the two groups and correlate Ktrans and vp with neuropsychological tests for mTBI patients. Results: Increased permeability owing to mTBI was observed in the Patlak model but not in the extended Tofts and Kermode model. In the Patlak model, the mean Ktrans in the bilateral cerebral cortex was significantly higher in mTBI patients than in controls (p = 0.042). The mean vp values in the bilateral cerebellar WM and brainstem were significantly lower in mTBI patients than in controls (p = 0.009 and p = 0.011, respectively). The mean Ktrans of the bilateral cerebral cortex was significantly higher in patients with atypical performance in the auditory continuous performance test (commission errors) than in average or good performers (p = 0.041). Conclusion: BBB disruption, as reflected by the increased Ktrans and decreased vp values from the Patlak model, was observed throughout the bilateral cerebral cortex, bilateral cerebellar WM, and brainstem in mTBI patients with PCS.

나노구조 교환결합 삼층박막의 열적 안정성 예측 (Thermal Stability of a Nanostructured Exchange-coupled Trilayer)

  • 이종민;임상호
    • 한국자기학회지
    • /
    • 제20권2호
    • /
    • pp.75-82
    • /
    • 2010
  • 나노구조 교환결합 삼층박막의 열적안정성을 예측하기 위한 최근의 연구진전에 대하여 리뷰한다. 새로운 해석적/수치적 방법을 이용하여 나노구조 교환결합 삼층박막의 에너지 배리어, 나아가서 열적안정성을 예측한다. 이 방법의 특징은 수치적인 방법을 이용하여 얻은 magnetostatic 자기장을 포함하는 해석적인 전체 에너지 방정식을 이용함에 있다. 단자구라는 가정하에, 모든 magnetostatic 자기장은 자성층 전체 부피에 대해 그 값을 평균함으로써 유효 값을 취할 수 있다. 그러나, 평형상태에서는 자구의 구조가 복잡하며, 또한 불안정한 saddle point에서의 자구 구조를 알 수 있는 직접적인 방법이 없기 때문에, saddle point에서의 magnetostatic 자기장 역시 얻을 수 없다. 이러한 어려움은 micromagnetic simulation을 통해 얻을 수 있는 critical 자기장과 saddle point에서의 magnetostatic 자기장을 연결하는 방정식을 사용함으로써 극복되었다. 이 방법은 신뢰성이 확보된 micromagnetic simulation에 기반을 두고 있기 때문에 열적안정성을 정확하게 예측하는 것이 가능하다.

자기터널접합을 활용한 고집적 MRAM 소자 기술 (High Density MRAM Device Technology Based on Magnetic Tunnel Junctions)

  • 전병선;김영근
    • 한국자기학회지
    • /
    • 제16권3호
    • /
    • pp.186-191
    • /
    • 2006
  • 자기터널접합 기반의 MRAM(magnetic random access memory)은 자기저항효과를 응용하는 메모리소자로서 비휘발성과 고속 정보처리가 가능할 뿐만 아니라 고집적화 할 수 있는 차세대 통합형 비휘발성 메모리이다. 그러나 기존의 메모리 소자들에 비해 스위칭 산포가 크고, 기록마진(writing margin)이 확보되지 않아 아직까지는 고집적화가 어려운 실정이다. 최근 포화자화가 낮은 NiFeSiB 및 CoFeSiB과 같은 비정질 강자성체를 자기터널접합의 자유층 재료로 사용하여 스위칭 자기장의 거대화를 크게 감소시켜 MRAM의 기록마진을 높이는 연구결과에 관해 정리하여 보았다. 그리고 이러한 물질을 이용하여 자기터널접합의 재생마진(reading margin)과 관련된 터널자기저항비의 인가전압의존성을 저감시킬 수 있었다. 본고에서는 나노자기소자 기술의 중요한 분야인 MRAM의 기술발전 방향과 연구사례를 소개하고자 한다.

MR Imaging and Histological Findings of Experimental Cerebral Fat Embolism in Cats

  • Park Byung-Rae;Ko Seong-Jin;Kim Hwa-Gon
    • 대한의생명과학회지
    • /
    • 제10권3호
    • /
    • pp.285-291
    • /
    • 2004
  • To determine the magnetic resonance (MR) imaging findings and natural history of cerebral fat embolism in a cat model, and to correlate the MR imaging and histologic fmdings. Intemel carotid artery of 11 cats was injected with 0.1 ml of triolein. T2-weighted, T1-weighted and Gd-enhanced T1-weighted images were obtained serially for 2 hours, 1 days, 4 days, 1 week, 2 weeks and 3 weeks after embolization. Any abnormal signal intensity was evaluated. After MR imaging at 3 weeks, brain tissue was obtained for light microscopic (LM) examination using hematoxylin-eosin (HE) and Luxol fast blue staining, and for electron microscopic examination. The LM examination with HE staining revealed normal histological findings in the greater part of an embolized lesion. Cystic change was observed in the gray matter of 8 cats, while in the gray and white matter of 3 cats. At LM examination, Luxol fast blue, staining demonstrated demyelination around the cystic change occurring in the white matter, and EM examination of the embolized cortex revealed sporadic intracapillary fat vacuoles (n=11) and disruption of the blood-brain barrier (n=4). Most lesions were normal, however, and perivascular interstitial edema and cellular swelling were mild compared with the control side. The greater part of an embolized lesion showed reversible findings at MR and histological examination. Irreversible focal necrosis was, however, observed in gray and white matter at weeks 3.

  • PDF

Solution Structure of a Prion Protein: Implications for Infectivity

  • He Liu;Jones, Shauna-Farr;Nikolai Ulyanov;Manuel Llinas;Susan Marqusee;Fred E. Cohen;Stanley B. Prusiner;Thomas L. James
    • 한국자기공명학회논문지
    • /
    • 제2권2호
    • /
    • pp.85-105
    • /
    • 1998
  • Prions cause neurodegenerative diseases in animals and humans. The scrapie prion protein (PrPSc) is the major-possibly only-component of the infectious prion and is generated from the cellular isoform (PrPC) by a conformational change. Limited proteolysis of PrPSc produces an polypeptide comprised primarily of residues 90 to 231, which retains infectivity. The three-dimensional structure of rPrP(90-231), a recombinant protein resembling PrPC with the Syrian hamster (SHa) sequence, was solved using multidimensional NMR. Low-resolution structures of rPrP(90-231), synthetic peptides up to 56 residues, a longer (29-231, full-length) protein with SHa sequence, and a short here further structure refinement of rPrP(90-231) and dynamic features of the protein. Consideration of these features in the context of published data suggests regions of conformational heterogeneity, structural elements involved in the PrPC\longrightarrowPrPSc transformation, and possible structural features related to a species barrier to transmission of prion diseases.

  • PDF

Oscillatory Josephson-Vortex Resistance in Stacks of $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}$ Intrinsic Josephson Junctions

  • 최재현;배명호;이후종;김상제
    • Progress in Superconductivity
    • /
    • 제7권1호
    • /
    • pp.17-21
    • /
    • 2005
  • We report the oscillation of the Josephson vortex-flow resistance in the rectangular stacks of $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}$(Bi-2212) intrinsic Josephson junctions (IJJs). Apiece of Bi-2212 single crystal containing a few tens of IJJs was sandwiched between two gold electrodes and fabricated into a rectangular shape with the typical lateral size of about $1.5{\times}10\;{\mu}m^2$, using e-beam lithography and focused ion-beam etching techniques. In a tesla-range magnetic field applied in parallel with the junction planes, the oscillation of the Josephson vortex flow resistance was observed at temperatures near 60 K. The oscillation results from the interplay between the triangular Josephson vortex lattice and the potential barrier at the boundary of a single crystal. The oscillatory magnetoresistance for different bias currents, external magnetic fields, and the tilt-angles provides useful information on the dynamics of the coupled Josephson-vortex lattice system.

  • PDF

Epitaxial Overlayers vs Alloy Formation at Aluminum-Transition Metal Interfaces

  • Smith, R.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.29-29
    • /
    • 1999
  • The synthesis of layered structures on the nanometer scale has become essential for continued improvements in the operation of various electronic and magnetic devices. Abrupt metal-metal interfaces are desired for applications ranging from metallization in semiconductor devices to fabrication of magnetoresistive tunnel junctions for read heads on magnetic disk drives. In particular, characterizing the interface structure between various transition metals (TM) and aluminum is desirable. We have used the techniques of MeV ion backscattering and channeling (HEIS), x-ray photoemission (ZPS), x-ray photoelectron diffraction(XPD), low-energy ion scattering (LEIS), and low-energy electron diffraction(LEED), together with computer simulations using embedded atom potentials, to study solid-solid interface structure for thin films of Ni, Fe, Co, Pd, Ti, and Ag on Al(001), Al(110) and Al(111) surfaces. Considerations of lattice matching, surface energies, or compound formation energies alone do not adequately predict our result, We find that those metals with metallic radii smaller than Al(e.g. Ni, Fe, Co, Pd) tend to form alloys at the TM-Al interface, while those atoms with larger atomic radii(e.g. Ti, Ag) form epitaxial overlayers. Thus we are led to consider models in which the strain energy associated with alloy formation becomes a kinetic barrier to alloying. Furthermore, we observe the formation of metastable fcc Ti up to a critical thickness of 5 monolayers on Al(001) and Al(110). For Ag films we observe arbitrarily thick epitaxial growth exceeding 30 monolayers with some Al alloying at the interface, possible driven by interface strain relief. Typical examples of these interface structures will be discussed.

  • PDF

MR Spectroscopy of Cerebral Fat Embolism in Cats

  • Park Byung-Rae
    • 대한의생명과학회지
    • /
    • 제11권2호
    • /
    • pp.221-225
    • /
    • 2005
  • To investigate the spectroscopic findings of embolized lesions induced with a fat-emulsion technique with magnetic resonance images (MRI). A fat emulsion was made with 0.1 ml of triolein and 20 ml of normal saline. In 12 cats, the internal carotid artery was infused with the fat emulsion. Contrast-enhanced T1-weighted MRI and multivoxel spectroscopy were obtained at 1 hour, 1 and 4 days, and 1 week after embolization. NAA (N-acetylaspartate), Cr (creatine) and Cho (choline) were evaluated on the spectroscopy. Statitistical analysis wsperformed at the embolized and contralateral normal hemisphere in the integral and amplitude of NAA, Cr and Nho in time course. Also NAA/Cr and Cho/Cr were compared in both hemisphere and in time course. The emboli zed lesions showed contrast enhance ments on Gd-enhanced Tl-weighted i~ages at 1 hour. This contrast enhancement was decreased at day 1, and id not appear agter day 4. In spectroscopy, the embolized hemisphere showed no statistical difference to the normal contralateral side at 1 hour and in time course. NAA/Cr and Cho/Cr were not significantly different in both hemispheres at 1 hour and in time course. Cerebral-fat embolism induced by a triolein emulsion in cats revealed no statistical difference on MR spectroscopy. Triolein-emulsion can be used in the study of blood-brain barrier.

  • PDF

Resonance tunneling phenomena by periodic potential in type-II superconductor

  • Lee, Yeong Seon;Kang, Byeongwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권1호
    • /
    • pp.1-5
    • /
    • 2014
  • We calculated the resonance tunneling energy band in the BCS gap for Type-II superconductor in which periodic potential is generated by external magnetic flux. In this model, penetrating magnetic flux was assumed to be in a fixed lattice state which is not moving by an external force. We observed the existence of two subbands when we used the same parameters as for the $Nd_{1.85}Ce_{0.15}CuO_X$ thin film experiment. The voltages at which the regions of negative differential resistivity (NDR) started after the resonant tunneling ended were in a good agreement with the experimental data in the field region of 1 T - 2.2 T, but not in the high field regions. Discrepancy occurred in the high field region is considered to be caused by that the potential barrier could not be maintained because the current induced by resonant tunneling exceeds the superconducting critical current. In order to have better agreement in the low field region, more concrete designing of the potential rather than a simple square well used in the calculation might be needed. Based on this result, we can predict an occurrence of the electromagnetic radiation of as much difference of energy caused by the 2nd order resonant tunneling in which electrons transit from the 2nd band to the 1st band in the potential wells.

증류수 계면처리를 이용한 고온초전도체 죠셉슨 접합 제작 (HTS Josephson Junctions with Deionized Water Treated Interface)

  • 문승현;박완규;계정일;박주도;오병두
    • Progress in Superconductivity
    • /
    • 제2권2호
    • /
    • pp.76-80
    • /
    • 2001
  • We have fabricated YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) ramp-edge Josephson junctions by modifying ramp edges of the base electrodes without depositing any artificial barrier layer. YBa$_2$Cu$_3$O/7-x//SrTiO$_3$ (YBCO/STO) films were deposited on SrTiO$_3$(100) by on-axis KrF laser deposition. After patterning the bottom YBCO/STO layer, the ramp edge was cleaned by ion-beam and then reacted with deionized water under various conditions prior to the deposition of counter-electrode layers. The top YBCO/STO layer was deposited and patterned by photolithography and ion milling. We measured current-voltage (I-V) characteristics, magnetic field modulation of the critical current at 77 K. Some showed resistively shunted junction (RSJ)-type I-V characteristics, while others exhibited flux-flow behaviors, depending on the dipping time of the ramp edge in deionized water. Junctions fabricated using optimized conditions showed fairly uniform distribution of junction parameters such as I$_{c}$R$_{n}$ values, which were about 0.16 mV at 77 K with 1$\sigma$~ 24%. We made a dc SQUID with the same deionized water treated junctions, and it showed the sinusoidal modulation under applied magnetic field at 77 K. 77 K.

  • PDF