• Title/Summary/Keyword: Magnetic Abrasive

Search Result 127, Processing Time 0.025 seconds

A Study on the Optimization of Deburring Process for the Micro Channel using EP-MAP Hybrid Process (전해-자기 복합 가공을 이용한 마이크로 채널 디버링공정 최적화)

  • Lee, Sung-Ho;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.298-303
    • /
    • 2013
  • Magnetic abrasive polishing is one of the most promising finishing methods applicable to complex surfaces. Nevertheless this process has a low efficiency when applied to very hardened materials. For this reason, EP-MAP hybrid process was developed. EP-MAP process is expected to machine complex and hardened materials. In this research, deburring process using EP-MAP hybrid process was proposed. EP-MAP deburring process is applied to micro channel, thereby it can obtain both deburring process and polishing process. EP-MAP deburring process on the micro channel was performed. Through design of experiment method, error of height in this process according to process parameter is analyzed. When the level 1 parameter A(magnetic flux density) and level 2 parameter B(electric potential), C(working gap) and level 3 parameter D(feed rate) are applied in the deburring process using EP-MAP hybrid process, it provides optimum result of EP-MAP hybrid deburring process.

Smart Decontamination Device for Small-size Radioactive Scrap Metal Waste : Using Abrasion pin in Rotating Magnetic Field and Ultrasonic Wave Cleaner (소형 금속방사성폐기물 제염장치 개발 : 자기장 연삭핀과 초음파 세정기의 응용)

  • Hong, Yong-Ho;Park, Su-Ri;Han, Sang-Wook;Kim, Byung-Jick
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.79-88
    • /
    • 2014
  • We have developed a smart decontamination device for small-size radioactive scrap metal (SSRSM) necessarily generated from nuclear facilities. This is a multi-modal device such as rotation of magnetic field focusing on the region containing the abrasion pins placed around target and ultrasonic cleaner. Additionally, in order to increase the decontamination efficiency we have modified some configuration of the device so that it could work on them evenly and totally. With the Optimal operating for operation of the new device, we tried to decontaminate some various metal selected as a sample during 15 minutes sequentially using each method, magnetic and ultrasonic device. As a result, the range of decontamination factor has been highly increased to 18~56. After decontamination, all samples were found its activity less than background level.

Run-to-Run Process Control and the Analysis of Process Parameters using Design of Experiment in Surface Finishing (실험계획법에 의한 파라미터 분석과 Run to Run 제어를 이용한 폴리싱 공정 제어)

  • 안병운;박성준;이상조;윤종학
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.92-96
    • /
    • 2004
  • In this paper, polishing method using bonded magnetic abrasive particle has been applied to the micro mold polishing. Through process control using the Run-to-Run control, it tried to form the surface roughness In order to grasp the influence of the surface roughness which is reached by selection of control factor and the factor, a design of experiment was been processed. The study is processed with a purpose of to embody and to maintain the surface roughness of nano scale by the basis of an influence between a control factor and the factors which has been selected in this way. As a result, the result of the process control converged at a target value of surface roughness Ra 10nm and Rmax 50nm

  • PDF

Development of Straightness, Roundness Measurement System for Standard Electrode of Loss Angle (손실각 표준기 전극의 진직, 진원도 측정시스템 개발)

  • 장종훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.198-203
    • /
    • 1998
  • To acquire the high precision of profile for standard electrode of loss angle, it is needed ultraprecision machining technology like MEAP(Magnetic Electronic Abrasive Polishing) and the very high profile measurement technology which can measure a micro unit about the workpiece. So, in this paper, it was developed the measurement system of precision of profile using non-contactable sensor that was approximate sensor of capacitance type, because that is better than others in the electrical characteristics. And standard electrode of loss angle was machined by the MEAP machining technology. In this study, it was development of precision measurement system. This system could be used measure the workpiece of roundness and straightness much more precise and faster than general mechanical measurement system done before. And it could be helped to minimize machining time and planning by very fast and precise measurement about the workpiece.

  • PDF

Application and Parameter Optimization of EP-MAP Hybrid Machining for Micro Pattern Deburring (미세 패턴의 디버링을 위한 전해-자기연마 복합가공의 적용과 공정 최적화에 관한 연구)

  • Lee, Sung-Ho;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.114-120
    • /
    • 2013
  • An EP(Electrolytic Polishing)-MAP(Magnetic Abrasive Polishing) hybrid process was applied to remove burr on the micro pattern. Micro pattern fabrication processes are combined with micro milling and EP-MAP hybrid process for deburring. Depending on the micro milling conditions which are applied, micro burrs are formed around the side and top of the pattern. The EP-MAP deburring is used to remove these burrs effectively. To optimize removal rate and form error in the EP-MAP hybrid process, a design of experiment was performed. The effect of deburring process and form error of micro pattern are evaluated via SEM images and the results of AFM.

A study on material removal characteristics of MR fluid jet polishing system through flow analysis (유동해석을 통한 MR fluid jet polishing 시스템의 재료제거 특성 분석)

  • Sin, Bong-Cheol;Lim, Dong-Wook;Lee, Jung-Won
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • Fluid jet polishing is a method of jetting a fluid to polish a concave or free-form surface. However, the fluid jet method is difficult to form a stable polishing spot because of the lack of concentration. In order to solve this problem, MR fluid jet polishing system using an abrasive mixed with an MR fluid whose viscosity changes according to the intensity of a magnetic field is under study. MR fluid jet polishing is not easy to formulate for precise optimal conditions and material removal due to numerous fluid compositions and process conditions. Therefore, in this paper, quantitative data on the factors that have significant influence on the machining conditions are presented using various simulations and the correlation studies are conducted. In order to verify applicability of the fabricated MR fluid jet polishing system by nozzle diameter, the flow pattern and velocity distribution of MR fluid and polishing slurry of MR fluid jet polishing were analyzed by flow analysis and shear stress due to magnetic field changes was analyzed. The MR fluid of the MR fluid jet polishing and the flow pattern and velocity distribution of the polishing slurry were analyzed according to the nozzle diameter and the effects of nozzle diameter on the polishing effect were discussed. The analysis showed that the maximum shear stress was 0.45 mm at the diameter of 0.5 mm, 0.73 mm at 1.0 mm, and 1.24 mm at 1.5 mm. The cross-sectional shape is symmetrical and smooth W-shape is generated, which is consistent with typical fluid spray polishing result. Therefore, it was confirmed that the high-quality surface polishing process can be stably performed using the developed system.

A Study on the Wear Behavior of Tetrahedral Amorphous Carbon Coatings Based on Bending Angles of the Filtered Cathodic Vacuum Arc with Different Arc Discharge Currents (자장여과아크소스의 자장필터 꺾임 각도와 아크방전전류에 따라 증착된 ta-C 코팅의 마모 거동 연구)

  • Kim, Won-Seok;Kim, Songkil;Jang, Young-Jun;Kim, Jongkuk
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.101-108
    • /
    • 2022
  • The structure and properties of tetrahedral amorphous carbon (ta-C) coatings depend on the main process parameters and bending angles of the magnetic field filter used in the filtered cathodic vacuum arc (FCVA). During the process, it is possible to effectively control the plasma flux of carbon ions incident on the substrate by controlling the arc discharge current, thereby influencing the mechanical properties of the coating film. Furthermore, we can control the size and amount of large particles mixed during carbon film formation while conforming with the bending angle of the mechanical filter mounted on the FCVA; therefore, it also influences the mechanical properties. In this study, we consider tribological characteristics for filtered bending angles of 45° and 90° as a function of arc discharge currents of 60 and 100 A, respectively. Experiment results indicate that the frictional behavior of the ta-C coating film is independent of the bending angle of the filter. However, its sliding wear behavior significantly changes according to the bending angle of the FCVA filter, unlike the effect of the discharge current. Further, upon changing the bending angle from 45° to 90°, abrasive wear gets accelerated, thereby changing the size and mixing amount of macro particles inside the coating film.