• Title/Summary/Keyword: Magnet.

Search Result 4,400, Processing Time 0.03 seconds

Confined Pt and CoFe2O4 Nanoparticles in a Mesoporous Core/Shell Silica Microsphere and Their Catalytic Activity

  • Kang, Dong-Hyeon;Eum, Min-Sik;Lee, Byeong-No;Bae, Tae-Sung;Lee, Kyu-Reon;Lim, Heung-Bin;Hur, Nam-Hwi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3712-3719
    • /
    • 2011
  • Confined Pt and $CoFe_2O_4$ nanoparticles (NPs) in a mesoporous core/shell silica microsphere, Pt-$CoFe_2O_4$@meso-$SiO_2$, were prepared using a bi-functional linker molecule. A large number of Pt NPs in Pt-$CoFe_2O_4$@meso-$SiO_2$, ranging from 5 to 8 nm, are embedded into the shell and some of them are in close contact with $CoFe_2O_4$ NPs. The hydrogenation of cyclohexene over the Pt-$CoFe_2O_4$@meso-$SiO_2$ microsphere at $25^{\circ}C$ and 1 atm of $H_2$ yields cyclohexane as a major product. In addition, it gives oxygenated products. Control experiments with $^{18}O$-labelled water and acetone suggest that surface-bound oxygen atoms in $CoFe_2O_4$ are associated with the formation of the oxygenated products. This oxidation reaction is operative only if $CoFe_2O_4$ and Pt NPs are in close contact. The Pt-$CoFe_2O_4$@meso-$SiO_2$ catalyst is separated simply by a magnet, which can be re-used without affecting the catalytic efficiency.

Optimal Design and Performance Evaluation of X-type Magnetic Spring Suspension for Commercial Vehicle Seat (상용차 시트용 X-형 구조 마그네틱 현가기구의 최적 설계 및 성능평가)

  • Kwac, Lee Ku;Kim, Hong Gun;Song, Jung Sang;Shin, Hee Jae;Seo, Min Kang;Kim, Byung Ju;An, Kay Hyeok;Lee, Hye Min;Han, Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.456-464
    • /
    • 2014
  • Commercial vehicle drivers typically feel more fatigued compared to general-public drivers. because they spend longer periods of time driving and experience more rough road conditions. This study showed that the application of a magnet, a linear spring, and a seat suspension with nonlinear characteristics was the optimal design to increase comfort while driving. The resonant frequency for the optimal design suspension was 2.8 Hz, and the stiffness was analyzed through displacement-load experiments. Vibration transmissibility was analyzed by suspension stiffness and the existing dynamic compression. The magnetic spring type was at 0.875. As a result, the X-type magnetic spring performed better than the existing spring at 0.729.

Development of Oriental-Western Fusion Patient Monitor by Using the Clip-type Pulsimeter Equipped with a Hall Sensor, the Electrocardiograph, and the Photoplethysmograph (홀센서 집게형 맥진기와 심전도-용적맥파계를 이용한 한양방 융합용 환자감시장치 개발연구)

  • Lee, Dae-Hui;Hong, Yu-Sik;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.135-143
    • /
    • 2013
  • The clip-type pulsimeter equipped with a Hall sensor has a permanent magnet attached in the "Chwan" position to the center of a radial artery. The clip-type pulsimeter is composed of a hardware system measuring voltage signals. These electrical bio-signals display pulse rate, non-invasive blood pressure, respiratory rate, pulse wave velocity (PWV), and spatial pulse wave velocity (SPWV) simultaneously measured by using the radial artery pulsimeter, the electrocardiograph (ECG), and the photoplethysmograph (PPG). The findings of this research may be useful for developing a oriental-western biomedical signal storage device, that is, the new and fusion patient monitor, for a U-health-care system.

Levitation Control Simulation of a Maglev Vehicle Considering Guideway Flexibility (가이드웨이 유연성이 고려된 자기부상열차 부상제어 시뮬레이션)

  • Han, Jong-Boo;Lim, Jaewon;Kim, Chang-Hyun;Han, Hyung-Suk;Kim, Sung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • In magnetic levitation vehicles, the clearance between the magnet and track should be maintained within an allowable range through a feedback control loop. The flexibility of the guideway would introduce additional modes in the overall suspension system, resulting in dynamic interaction between the guideway vibration and the electromagnetic suspension control system. This dynamic interaction can be a serious problem, particularly at very low speeds or standstill, and may cause airgap instability. To optimize the overall system dynamics, an integrated dynamic model including mechanical and electrical parts and a flexible guideway as well as a control loop was developed. With the proposed model, airgap simulations at standstill were performed while varying the control gains, specifically with the aim of understanding the effects of gains of the PID controller on the airgap variation. The findings may be used to achieve a stable levitation controller design.

The Presence and Role of Intergranular Phase in Nd8Fe86-xNbxB6 (x = 0, 1, 2, 3) Nanocomposite Magnet Characterized by Mossbauer Spectroscopy

  • Han, Jong-Soo;Yang, Choong-Jin;Park, Eon-Byeung;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.14-22
    • /
    • 2005
  • Precisely refined Mossbauer study and nano structure observation revealed that intergranular phase formed between a-Fe and Nd₂Fe14B phase in NdFeNbB alloys plays a significant role on the magnetic properties. The intergranular interaction was characterized in term of Henkel Plot (δM plot), and hyperfine field, quardrupole splitting and isomer shift were refined to predict the presence and role of the intergranular phase. By the addition of Nb into Nd8Fe86B6 composition, coercivity was found to increase by 25% due to the refinement of average grain size of both the soft and hard magnetic phases which was decreased from 50 nm of virgin Nd/sub 8/Fe/sub 86/B/sub 6/ to 25 nm in Nd8Fe 85Nb₁B6 alloys. The role of Nb addition was confirmed to stabilize the Nd₂Fe14B lattice preventing from thermal vibration of the corresponding sites substituted Fe by Nb atoms in all sites in the Nd₂Fe14B lattice. The enhanced coercivity was originated from the exchange hardening of soft and amorphous phases surrounding the hard magnetic Nd₂Fe14B crystal.

The Adaptive Maximum Power Point Tracking Control in Wind Turbine System Using Torque Control (토크제어를 이용한 풍력발전시스템의 적응 최대 출력 제어)

  • Hyun, Jong-Ho;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.225-231
    • /
    • 2015
  • The parameter K which decides how much to convert wind energy to electric energy in MPPT(maximum power point tracking) control of wind turbine system using torque controller is changed because blade shape and air density change. If the parameter K is not optimal value, power lose occur. The changed parameter K is important issue in wind turbine system. In this paper, to solve this problem, considering wind turbine system using back-to-back converter control and torque control, we propose the adaptive MPPT algorithm which performs fast control by using initial K, estimates mechanical power using Kalman filter method, uses the estimated mechanical power as input for MPPT algorithm again, and consequently performs optimal MPPT control.

Torque Predictive Control for Dynamic Performance Improvement of Clamping Force in EMB for Railroad Cars (철도 차량용 EMB의 클램핑 포스 과도응답 향상을 위한 토크 예측 제어)

  • Jang, Yoon;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.174-184
    • /
    • 2017
  • This paper proposes a torque predictive control for dynamic performance improvement of clamping force in electro-mechanical brake (EMB) for railroad cars. In general, pneumatic braking system (PBS) is used for railroad cars. It is sensitive depending on environmental changes and it has increasing idle running time because of slow dynamic response. Additionally, the PBS has low braking efficiency in case braking torque more than standard value is applied to the brake system such as emergency braking. In order to overcome these disadvantages of the PBS, the EMB is used for the railroad cars. The EMB for railroad cars has advantages that increasing the fuel efficiency and design flexibility because it is able to decrease vehicle weight of railroad cars and secure space for design. In this paper, control method for dynamic performance improvement of clamping force in EMB for railroad car is proposed. The effectiveness of the proposed control method is verified by the simulation results.

USE OF MAGNETS IN THE TREATMENT OF ECTODERMAL DYSPLASIA (외배엽 이형성증 어린이에서 magnetic attachment를 이용한 보철치료)

  • Ju, Jin-Hyung;Lee, Kwang-Hee;Kim, Dae-Eop;Lee, Jong-Seon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.626-632
    • /
    • 2001
  • Ectodermal dysplasia is a hereditary disease characterized by congenital dysplasia of one or more ectodermal structures. Intraorally, common findings are anodontia or oligodontia, conical teeth, and, consequently, generalized spacing. This case presented the oral rehabilitation of a child with hypohidrotic ectodermal dysplasia. Oral rehabilitation is important from functional, esthetic, and psychologic perspectives. Due to the absence of teeth, the volume of alveolar bone and its growth are decreased, resulting in a loss of vertical dimension and protuberant lips. The treatment involved increasing the patient's vertical dimension of occlusion, fabricating a maxillary partial denture, and using magnets to help retain the mandibular partial denture. A 5-year 7-month old Korean boy was referred to the pediatric department for examination, evaluation and treatment of his disorder. we used magnets on '73 and '83 for enhanced retention of a mandibular overdenture. The magnet used in this case was the Magfit system(GC Co., Japan).

  • PDF

Adiabatic Demagnetization Cooling Technique (단숙 소자화 방법에 의한 냉동기술)

  • 이일수
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.317-332
    • /
    • 1998
  • The adiabatic nuclear demagnetization cooling technique has reduced the lowest accessible temperature to the regime of microkelvin, and consequently led to a large expansion in microkelvin physics such as solid and liquid $^{3}He$, superconductivity of noble metals, spin glass transition, and nuclear magnetism. Our ability to reach temperature in microkelvin regime has greatly facilitated by the developments of dilution refrigerator and superconductivity magnet. It is appropriate to divide nuclear demagnetization cooling into two categories; those in which only the nuclear spin system is cooled down and those in which the lattice and conduction electrons in the refrigerant or the specimen are also cooled by the cooling power of nuclear spin system. The former cooling technique has utilized to investigate the nuclear magnetism at temperature in nanokelvin regime. The latter is widely used in studying the phenomena occurring in microkelvin regime. In this review paper, we will discuss the basic principles of nuclear demagnetization cooling and its applications. This work is supported by the Basic Science Research Institute Program under contract number BSRI-97-2404.

  • PDF

OPP Polymer의 Plasma 표면 처리에 따른 Al 접착력의 향상

  • 한세진;김용한;이택동
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.212-212
    • /
    • 1999
  • Ar-O2 분위기의 Plasma 표면 처리된 OPP 의 polymer 위에 약 400$\AA$ 정도로 sputter 코팅된 Al의 부착력에 관하여 연구를 하였다. 금속과 polymer와 같이 성질이 서로 다른 물질이 서로 결합할 때 접착력은 제품의 성능과 신뢰도를 결정하는데 매우 중요한 인자이다. 최근 고분자재료의 표면을 플라즈마 처리 (plasma surface treatment)에 의해 고분자와 금속도포(coating) 층간의 접착력향상에 따라, 증착필름 및 인쇄용 필름 등의 기능도 향상시킬 수 있다. 저온 plasma를 이용한 표면처리는 plastic 재료가 가지고 있는 기본적인 특성을 저해하지 않고, 그 표면 층만을 개량하는 plasma 또는 sputter etching 갚은 electrical discharge 방법은 진공 증착 방식에서 많이 사용되고 있다. 7$\mu\textrm{m}$의 두께 OPP polymer를 10m/min의 속도로 OPP의 표면을 연속 plasma pretreatment를 하였다. 5$\times$10-2torr에서, PEM(Plasma Emission Monitor)를 이용하여 plasma intensity에 따른 Ar/O2비를 변화시키면서 test를 하였다. AFM과 XPS를 이용하여 OPP의 표면분석을 하였다. 이 plasma처리는 기존의 D.C plasma 처리 방식과는 달리 Midium frequency AC voltage hollow cathod 방식으로 plasma를 발생된 high energy plasma 분위기를 만들 수 있다. 이러한 방식은 -cycle일 때 plasma로부터 발생된 전자가 polymer 표면을 bombard 하게 되고, +cycle 일 때 polymer 표면이 cathod 가 되어 active ion에 의해 sputtering 이 된다. 이때 plasma 처리기의 polymer 기판 후면에 magnet를 설치하여 높은 ionization을 발생시켜 처리 효과를 한층 높여 주었다. 이 plasma 처리는 표면 청정화, 표면 etching 이 동시에 행하는 것과 함께 장시간 처리에 의해 표면에서는 미세한 과, C=C기, -C-O-의 극성기의 도입에 의한 표면 개량이 된다는 것을 관찰할 수 있다. OPP polymer 표면을 Ar 100%로 plasma 처리한 경우 C-O, C=O 등의 carbonyl가 발생됨을 알 수 있었다. C-O, C=O 등의 carbynyl polor group이 도입됨에 따라 sputter된 Al의 접착력이 향상됨을 알 수 있으며, TEM 관찰 결과 grain size도 상당히 작아짐을 알 수 있었다.

  • PDF