• 제목/요약/키워드: Magnet shape

검색결과 301건 처리시간 0.021초

가동 영구자석형 PMLSM 추력리플 최소화를 위한 영구자석 형상 최적화 (Permanent Magnet Shape Optimization of Moving Magnet type PMLSM for Thrust Ripple Minimization)

  • 윤강준;이동엽;김규탁
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.53-59
    • /
    • 2005
  • In this paper, optimum shape design of permanent magnet in slotted type Permanent Magnet Linear Synchronous Motor(PMLSM) is progressed for minimization of detent force owing to structure of slot-teeth and thrust ripple by harmonic magnetic flux of permanent magnet. In order to reduce remodeling time as changing design parameter for Permanent Magnet shape optimization, the moving model node technique was applied. The characteristics of thrust and detent force computed by finite element analysis are acquired equal effect both skewed basic model and optimum model which is optimization of permanent magnet shape. In addition to, thrust per unit volume is improved 4.l2[%] in optimum model.

영구자석 형상 최적화를 통한 Moving Magnet type PMLSM의 성능 향상 (The Improvement of Performance for Moving Magnet type PMLSM by Permanent magnet Shape Optimization)

  • 윤강준;이동엽;정춘길;김규탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.40-42
    • /
    • 2004
  • In this paper, optimum shape design of permanent magnet in slotted type Permanent Magnet Linear Synchronous Motor(PMLSM) is progressed for minimization of detent force owing to structure of slot-teeth and thrust ripple by harmonic magnetic flux of permanent magnet. The characteristics of thrust and detent force computed by Finite element Analysis are acquired equal effect both skewed basic model and optimum model which is optimization of permanent magnet shape.

  • PDF

세탁기용 영구자석 동기전동기의 특성 향상에 관한 연구 (The Study on the improvement of Characteristics of Permanent Magnet Synchronous Motor for Washing Machine)

  • 정대성
    • 조명전기설비학회논문지
    • /
    • 제29권10호
    • /
    • pp.47-53
    • /
    • 2015
  • IPMSM(Insert Permanent Magnet Synchronous Motor) is a very high degree of freedom in the design according to the permanent magnet insertion position. And the performance of IPMSM is affected a lot on barrier shape which determines the magnetic flux path from magnet. Thus the position of permanent magnet and the barrier shape has to be designed by considering both specification and operation condition. In the paper, the permanent magnet and barrier shape which is suitable for direct drive motor of washing machine has been studied. In addition, in order to verify the validity of the study, the test was evaluated by making a prototype motor.

0.5MJ 초전도 펄스 마그네트의 최적화 설계에 관한 연구 (Optimum Design Study on 0.5 MJ-Class Superconducting Pulse Magnet)

  • 노완수;한송엽;황석영;이승원;홍원표
    • 대한전기학회논문지
    • /
    • 제39권8호
    • /
    • pp.813-819
    • /
    • 1990
  • In this paper, a new design method for superconducting pulse magnet is presented. Given energy storage capacity, magnet shape parameters are determined to minimize superconducting material quantity. Once the shape parameters are determined, cooling channel is designed and degradation characteristics are confirmed. According to the proposed magnet design concept, relatively uniform and low field distribution is obtained. Therefore, both the quantity of superconducting material and the mechanical load over magnet are reduced.

  • PDF

대용량 BLDC 전동기의 영구자석 형상 최적화를 통한 최적화 기법 연구 (A Study on the Optimization Strategy using Permanent Magnet Pole Shape Optimization of a Large Scale BLDC Motor)

  • 우성현;신판석;오진석;공영경;빈재구
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.897-903
    • /
    • 2010
  • This paper presents a response surface method(RSM) with Latin Hypercube Sampling strategy, which is employed to optimize a magnet pole shape of large scale BLDC motor to minimize the cogging torque. The proposed LHS algorithm consists of the multi-objective Pareto optimization and (1+1) evolution strategy. The algorithm is compared with the uniform sampling point method in view points of computing time and convergence. In order to verify the developed algorithm, a 6 MW BLDC motor is simulated with 4 design parameters (arc length and 3 variables for magnet) and 4 constraints for minimizing of the cogging torque. The optimization procedure has two stages; the fist is to optimize the arc length of the PM and the second is to optimize the magnet pole shape by using the proposed hybrid algorithm. At the 3rd iteration, an optimal point is obtained, and the cogging torque of the optimized shape is converged to about 14% of the initial one. It means that 3 iterations aregood enough to obtain the optimal design parameters in the program.

횡자속형 2중 공극 영구자석 동기발전기의 마그네트 형상설계 (Design of Magnet Shape for Axial-Flux Type Permanent-Magnet Synchronous Generator with Dual Air-Gap)

  • 최경호;김경식;진명철;황돈하;배성우;김동희;노채균
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.828-831
    • /
    • 2003
  • This paper presents a novel design technique and characteristic analysis of Magnet for dual air-gap axial-flux type permanent-magnet synchronous generator. The process of magnet design is applied to the motor design and steady state analysis considering output voltage waveforms and magnetic flux waveforms. Design and construction of an axial-flux permanent-magnet generator with power output at 60 [Hz], 300[r/min] is introduced. Finite-element (FE) method is applied to analyze magnet shape characteristics. The results of FE analysis show generator is feasible for use with dual air-gap axial-flux permanent- magnet synchronous generator.

  • PDF

영구자석전동기의 코깅토오크저감을 위한 민감도에 의한 형상 최적화 (Shape Optimization for Reduction of Cogging Torque in Permanent Magnet Motor by Sensitivity Analysis)

  • 박일한;이범택;한현교;한송엽
    • 대한전기학회논문지
    • /
    • 제39권12호
    • /
    • pp.1246-1252
    • /
    • 1990
  • In order to reduce the cogging torque in a permanent magnet motor, a method to optimize the shape of permanent magnet and iron pole is presented. Sine the cogging torque comes from the irregular system energy variation according to the rotor position, system energy variation is taken as object function and the object function is minimized to optimize the shape. The positions of permanent magnet surface and iron pole surface are chosen as design parameters and sensitivity of object function with respect to the design parameter is calculated. The shape is changed according to sensitivity can be generated by methods that exploit the FEM formulation. A numerical example shows that the cogging torque is reduced to about 10% of the original value.

  • PDF

민감도기법과 RSM을 이용한 대용량 BLDC 전동기 영구자석의 형상 최적화 (A Magnet Pole Shape Optimization of a Large Scale BLDC Motor Using a RSM With Design Sensitivity Analysis)

  • 신판석;정현구;우성현
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.735-741
    • /
    • 2009
  • This paper presents an algorithm for the permanent magnet shape optimization of a large scale BLDC(Brushless DC) motor to minimize the cogging torque. A response surface method (RSM) using multiquadric radial basis function is employed to interpolate the objective function in design parameter space. In order to get a reasonable response surface with relatively small number of sampling data points, additional sampling points are added on the basis of design sensitivity analysis computed by using FEM. The algorithm has 2 stages: the first stage is to determine the PM arc angle, and the 2nd stage is to optimize the magnet pole shape. The developed algorithm is applied to a 5MW BLDC motor to get a minimum cogging torque. After 3 iterations with 4 design parameters, the cogging torque is reduced to 13.2% of the initial one.

Analysis and Design of a Novel-Shape Permanent Magnet Synchronous Motor for Minimization of Torque Ripple and Iron Loss

  • Kim, Jin-Hong;Seo, Jung-Moo;Jung, Hyun-Kyo;Won, Chung-Yuen
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.411-417
    • /
    • 2014
  • This paper presents the shape optimization of a permanent magnet synchronous motor to reduce the torque ripple and iron loss. Specifically, the harmonics of the electromotive force and cogging torque are decreased by adjusting the permanent magnet arrangement and non-uniform air gap length. In addition, an additional flux path along the q-axis is proposed with a unique rotor shape to increase the q-axis inductance and reluctance torque. The improvement in the performance of the proposed model is verified with simulated and experimental results.