• Title/Summary/Keyword: Magnet layer

Search Result 81, Processing Time 0.021 seconds

Design Analysis and Economic Analysis of high Efficiency 100kW Generator for Hydro Power System (소수력 발전용 고효율 100kW 발전기의 설계해석 및 경제성 분석)

  • Jee, In-Ho;Kang, Seung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.428-438
    • /
    • 2016
  • This paper shows the design of the 100 kW IPMSG for small hydraulic power generator. The high-efficient generator, method of the dual layer interior permanent magnet was studied to improve the method of the single layer interior permanent magnet, which is mostly used. Analysis of magnet arrangement and cogging torque was done by FEM. According to structure analysis of dual layer interior permanent magnet, the amount of usage of the permanent magnet was reduced and cogging torque was decreased as well. With these successful results, the high-efficient generator design was accomplished. Based on the results of the structure analysis, the test product was designed and manufactured. And the design values and performance outputs were compared and verified with success. Also, the economic feasibility was conducted based on the electric power generated from the test product installed at the site. By the B/C analysis, in case that only SMP was analyzed, B/C ratio was 1.24 at the discount ratio of 5.5%, which considered to be economically feasible. The study is expected to be used for the application of developing large scale high-efficient interior permanent magnet synchronous generator.

Characteristics Analysis of Double-layer AFPM Motor (Double-layer AFPM 전동기의 특성해석)

  • Kong, Jeong-Sik;Yoo, Hyune-O;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.24-27
    • /
    • 1999
  • This paper proposed a method to reduce torque ripple of double-layer axial flux permanent magnet motor. Torque is generated by interacting between current of stator winding and airgap flux. In the case of slotless axial flux permanent magnet motor, only commutation torque component is significant. Hence, cogging and reluctance torque will not be considered. For this propose, we were supplied differential phase current in each winding and shifted rotor magnet. According to shifted rotor magnet and flux and phase of current were shifted, phase of developed torque in each side is difference. As a result, we could reduce the total torque ripple in motor and obtain minimum torque ripple in the case of 7.5 degree shifting angle between two rotors.

  • PDF

Operation Characteristics of a Small Single-phase Written-pole Motor in Home Appliance (가전기기용 소형 단상 Written Pole Motor의 운전특성)

  • Park, Seong-Cheol;Lee, Won-Yong;Yu, Byung-Hun;Kim, Dae-Kyong;Shin, Duck-Shick;Kim, Byung-Taek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.311-317
    • /
    • 2010
  • This paper deals with operation characteristics of a written-pole motor (WPM), having that of a permanent magnet (PM) synchronous motor and induction motor at once. The WPM also has a magnet layer on the surface of the rotor and the exciter pole that is a device to make the magnet layer magnetized during the operation. This study, introducing a fundamental structure and operation characteristics of a single-phase WPM, proposes a initial design method. With those ground, a 130W, single-phase WPM that is designed for a home appliance is presented and verified with a performance through the experiment.

A Study on the Characteristic Evaluation of An HTS Coil with respect to the Winding Methods

  • Jo, Hyun-Chul;Choi, Suk-Jin;Jang, Jae-Young;Hwang, Young-Jin;Lee, Chang-Young;Ahn, Min-Cheol;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.31-35
    • /
    • 2010
  • In superconducting magnet applications, winding methods of the superconducting magnet can be classified into a layer winding and a pancake winding. The superconducting magnet using high temperature superconductor (HTS) with rectangular shape is generally fabricated using the pancake winding method. On the other hand, low temperature superconducting (LTS) magnet may be wound by either a pancake winding or a layer winding. Compared with the layer winding, the pancake winding method has a merit of easy replacement of a damaged pancake module, but it also has a demerit of requirement of splicing between each double pancake modules. In this paper, we investigated characteristics of the layer and pancake winding methods using HTS. Six samples were wound out of BSCCO and Coated Conductors (CCs) by two winding methods and their characteristics were experimentally observed.

Adaptive PI Controller Design Based on CTRNN for Permanent Magnet Synchronous Motors (영구자석 동기모터를 위한 CTRNN모델 기반 적응형 PI 제어기 설계)

  • Kim, Il-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.635-641
    • /
    • 2016
  • In many industrial applications that use the electric motors robust controllers are needed. The method using a neural network in order to design a robust controller when a disturbance occurs is studied. Backpropagation algorithm, which is used in a conventional neural network controller is used in many areas, but when the number of neurons in the input layer, hidden layer and output layer of the neural network increases the processing speed of the learning process is slow. In this paper an adaptive PI(Proportional and Integral) controller based on CTRNN(Continuous Time Recurrent Neural Network) for permanent magnet synchronous motors is presented. By varying the load and the speed the validity of the proposed method is verified through simulation and experiments.

Inductance and Torque Characteristics Analysis of Multi-Layer Buried Magnet Synchronous Machines

  • Kwak, Sang-Yeop;Kim, Jae-Kwang;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.211-216
    • /
    • 2004
  • Inductance characteristics, torque variations and ripple according to current, and position of multi-layer buried magnet synchronous machines with field-weakening operations are presented. The rotor structure optimal design of a buried magnet synchronous machine with high performance is investigated, and optimization results and comparison among design candidates are shown. For the fast and accurate search of multiple optima, the auto-tuning niching genetic algorithm is used and a final solution is selected considering various design factors.

Optimal Rotor Shape Design of Asymmetrical Multi-Layer IPM Motors to Improve Torque Performance Considering Irreversible Demagnetization

  • Mirazimi, M.S.;Kiyoumarsi, A.;Madani, Sayed M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1980-1990
    • /
    • 2017
  • A study on the multi-objective optimization of Interior Permanent-Magnet Synchronous Motors (IPMSMs) with 2, 3, 4 and 5 flux barriers per magnetic pole, based on Genetic Algorithm (GA) is presented by considering the aspect of irreversible demagnetization. Applying the 2004 Toyota Prius single-layer IPMSM as the reference machine, the asymmetrical two-, three-, four- and five-layer rotor models with the same amount of Permanent-Magnets (PMs) is presented to improve the torque characteristics, i.e., reducing the torque pulsation and increasing the average torque. A reduction of the torque pulsations is achieved by adopting different and asymmetrical flux barrier geometries in each magnetic pole of the rotor topology. The demagnetization performance in the PMs is considered as well as the motor performance; and analyzed by using finite element method (FEM) for verification of the optimal solutions.

Effect of Axial-Layered Permanent-Magnet on Operating Temperature in Outer Rotor Machine

  • Luu, Phuong Thi;Lee, Ji-Young;Kim, Ji-Won;Chun, Yon-Do;Oh, Hong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2329-2334
    • /
    • 2018
  • This paper discusses the thermal effect of the number of permanent-magnet (PM) layers in an outer rotor machine. Depending on the number of axial-layer of PM, the operating temperature is compared analytically and experimentally. The electromagnetic analysis is performed using 3-dimensional time varying finite element method to get the heat sources depending on axial-layered PM models. Then thermal analysis is conducted using the lumped-parameter-thermal-network method for each case. Two outer rotor machines, which have the different number of axial-layer of PM, are manufactured and tested to validate the analysis results.

Insulation Life Estimation for Magnet Wire Under Inverter Surge and Temperature Stress (인버터 서지와 온도 스트레스 하에서 Magnet Wire 절연 수명평가)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.641-646
    • /
    • 2016
  • Coil specimen was prepared by coating a copper wire with two varnish thin layers: the first was polyamideimide (PAI)/nanosilica (5 wt%) varnish and the second was anti-corona PAI/nanosilica (15 wt%) varnish. Insulation breakdown voltage was investigated under inverter surge condition at $20^{\circ}C$, $70^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$, respectively. The insulation lifetime of the two layered coil was tens of times longer than that of original PAI coil. And the insulation lifetime decreased with increasing ambient temperature because there was weak binding strength between copper and varnish layer.

An Open Gradient Magnetic Separator Assembled Using NdFeB Magnets for a Use of Fine Particles Remover

  • Park, Eon-Byung;Choi, Seung-Duck;Yang, Choong-Jin;Lee, Won-Sub
    • Journal of Magnetics
    • /
    • v.3 no.3
    • /
    • pp.69-73
    • /
    • 1998
  • A drum type magnetic separator was designed and optimized by computer simulation. The separator consisted of rotating outer shell of drum, magnetic flux generator drum which was assembled with numbers of disk type magnet holders, and drum axis around which the magnet holders were fixed. NdFeB magnet blocks were inserted into the disks, and the disks were assembled layer by layer along the drum axis. Magnetic circuits of the separator were simulated on the basis of highest magnetic strength, least cost, and high yield of separation by using a Vector Field S/W employing the Opera-2D program. The separator proved a separation yield of 95% in removing fine iron-base particles, and installed at Hot Rolling Mill of Pohang Iron & Steel Co. In Korea.

  • PDF