• 제목/요약/키워드: Magnet design

검색결과 1,402건 처리시간 0.022초

300W급 이중 공극 구조 PMSM 설계 및 출력 특성에 관한 연구 (A Study on Output and Design of Permanent Magnet Synchronous Motor with Dual-gap)

  • 김승주;김윤환;최한석;문재원
    • 조명전기설비학회논문지
    • /
    • 제28권4호
    • /
    • pp.80-87
    • /
    • 2014
  • This paper suggests the dual-gap for generating power and increasing the torque of a direct-drive permanent magnet synchronous motor in a hybrid-cycle. To consider easy coil winding, we applied a structure of dual-gap for the permanent magnet synchronous motor (PMSM). Because the torque of PMSM with the dual-gap is very large, we are designed the appropriate specifications of the PMSM by selected the appropriate dual-gap slot and poles combination. The prototype model is selected by design theory for increasing torque and maximizing output power of PMSM. And the detailed structure design of the model was designed by the loading distribution method. The PMSM models were analyzed by finite element method. Finally, we have suggested appropriate rotor structure has benefit to further increasing torque and prevent decreasing of the output power in PMSM with dual-gap.

직구동 방식 영구자석 동기 발전기의 코깅 토크 저감을 위한 자성체 슬롯 ��지 형상 설계 (Design of Magnetic Slot Wedge Shape for Reducing Cogging Torque in Permanent Magnet Synchronous Generator of Direct Drive Type)

  • 문재원;김승주;최한석;박수강;김봉주;권병일
    • 조명전기설비학회논문지
    • /
    • 제26권3호
    • /
    • pp.80-87
    • /
    • 2012
  • This paper suggests the slot wedge shape for reducing the cogging torque of a direct-drive permanent magnet synchronous generator for a bike. To consider easy coil winding, we applied a structure of open slot for the permanent magnet synchronous generator (PMSG). Because the cogging torque of PWSG with the open slot is very large, we are designed the appropriate specifications of the PMSG by selected the appropriate material of slot wedge and various slot wedge shapes. The prototype model is selected by design theory for reducing cogging torque and maximizing efficiency of PMSG. And the detailed structure design of the model was designed by the loading distribution method. The PMSG models were analyzed by finite element method. Finally, we have suggested appropriate material of slot wedges and its shape which has benefit to further reducing cogging torque and preventing decreasing of the generating power.

Individual and Global Optimization of Switched Flux Permanent Magnet Motors

  • Zhu, Z.Q.;Liu, X.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권1호
    • /
    • pp.32-39
    • /
    • 2012
  • With the aid of genetic algorithm (GA), global optimization with multiple geometry parameters is feasible in the design of switched flux permanent magnet (SFPM) machines. To investigate the advantages of global optimization over individual optimization, which has been used extensively for the design of SFPM machines, a comparison between the two approaches is carried out for the case of fixed copper loss and volume. In the case of individual parameter optimization, the sequence in which the individual parameters are optimized is very important. In the global optimization a better design can always be achieved although the corresponding torque density is found to be only slightly better than that of individually optimized with correct design sequence. By using the obtained global optimization results, the performance in machines having two types of stator and rotor pole combinations, i.e. 12/10 and 12/14, are compared, and it is shown that higher torque is exhibited in the 12/14 SFPM machine. Finally, this paper also demonstrates that global optimization, with the restriction of equal pole width, magnet thickness and slot opening, can maximize the torque density without significantly sacrificing other performance, such as cogging torque and overload capability.

단상 유도동기전동기의 기동 특성 개선을 위한 회전자 바 형상 설계 (The Design of Rotor Bars of Single-Phase Line-Start Permanent Magnet Motor for Improving Starting Characteristics)

  • 이철규;권순효;양병렬;권병일
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권8호
    • /
    • pp.370-376
    • /
    • 2005
  • The single-phase induction motor is simple and durable, but the efficiency is low. Therefore, electric motors like HLDC and LSPM(line-start permanent magnet motor) that use the permanent magnet have been studied. The most advantages of single-phase LSPM is having the same stator as the stator of the single-phase induction motor and permanent magnets are just inserted in the squirrel cage rotor of the single-phase induction motor. But the characteristics of single-phase LSPM synchronous motor has very complex characteristics until the synchronization and if the design is not suitable, the single-phase LSPM synchronous motor cannot be synchronized. We designed a single-phase LSPM using the same stator and winding as the conventional single-phase induction motor, but newly designed the permanent magnets considering air gap magnetic flux density. The transient characteristics of the single-phase LSPM is not good because of a magnetic breaking torque, however, it can be improved by redesigning the rotor bars. We are proposed the design method of rotor bar for the single-phase LSPM to start softly and to make synchronization easily.

Optimal Rotor Structure Design of Interior Permanent Magnet Synchronous Machine based on Efficient Genetic Algorithm Using Kriging Model

  • Woo, Dong-Kyun;Kim, Il-Woo;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.530-537
    • /
    • 2012
  • In the recent past, genetic algorithm (GA) and evolutionary optimization scheme have become increasingly popular for the design of electromagnetic (EM) devices. However, the conventional GA suffers from computational drawback and parameter dependency when applied to a computationally expensive problem, such as practical EM optimization design. To overcome these issues, a hybrid optimization scheme using GA in conjunction with Kriging is proposed. The algorithm is validated by using two mathematical problems and by optimizing rotor structure of interior permanent magnet synchronous machine.

유전자 알고리즘을 이용한 영구자석 모터의 고정자 잇날 페어링 및 자석 극호각 설계에 의한 코깅 토오크의 저감 설계 (Minimization of Cogging Torque in Permanent Magnet Motors by Stator Pole Shoe Pairing and Magnet Arc Design using Genetic Algorithm)

  • 엄재부;황건용;황상문
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권1호
    • /
    • pp.1-6
    • /
    • 2002
  • Cogging torque is often a principal source of vibration and acoustic noise in high precision spindle motor applications. In this paper, cogging torque is analytically calculated using energy method to show that Fourier spectra of airgap permeance function and airgap MMF function are the most important design parameters to control cogging torque. To control these functions, stator pole shoe pairing and magnet arc design are proposed to minimize cogging torque. As for optimization technique, genetic algorithm is applied to handle trade-off effects of design parameters. Results show that the proposed method can reduce the cogging torque effectively.

마그네트 천장크레인의 최적설계와 직교배열을 이용한 민감도 분석 (The Optimum Design of Magnet Over Head Crane and the Sensitivity Analysis for Orthogonal Array)

  • 노영희;홍도관;최석창;안찬우;한근조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.786-790
    • /
    • 2002
  • In this study, structural optimum design was applied to the girder of magnet over head crane. The optimization was carried out using ANSYS Code for the deadweight of girder, especially focused on the thickness of its upper, lower, side and reinforced plates. The weight could be reduced up to around 15% with constraints of its deformation, stress, natural frequency and buckling strength. The structural safety was also verified by the buckling analysis of its panel structure. It might be thought to be very useful to design the conventional structures for the weight save through the structural optimization. The objective function and restricted function were estimated by the orthogonal array, and the sensitivity analysis of design variable fur that was operated.

  • PDF

Quasi-Newton법을 이용한 IPMSM의 효율 최적화 설계 (Maximization of Efficiency of IPMSM by Quasi-Newton Method)

  • 백성민;박병준;김용태;김규탁
    • 전기학회논문지
    • /
    • 제67권10호
    • /
    • pp.1292-1297
    • /
    • 2018
  • In this paper, efficiency optimization design of 600W class IPMSM was performed by using Quasi-Newton method. The output was limited to 600W to meet the same output as the basic model. The behavior of each variable as the design progressed was judged on the efficiency, which is the target value through correlation analysis. The design variables were set as the width of the stator, the position of the permanent magnet from the end of the rotor, the thickness of the permanent magnet, and the width of the permanent magnet.

자로축소형 스위치드 릴럭턴스 모터의 설계와 측정 (Design and Measurement of Switched Reluctance Motor with Short Magnet Flux Path)

  • 김진선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.149-154
    • /
    • 2007
  • The classical literature on SR motor design tends to focus on inner-rotor type motor rather than outer-rotor type motor, and dose not provide a complete procedure for configuration of outer-rotor type SR motor calculations that are also needed in every SR motors design. It is interested in the design of SR motors to shortening the magnet flux path in the iron core for reducing the iron loss. The 5 phases outer-rotor type SR Motor with short magnet flux path is introduced in this paper. For this the rotor of prototype is designed in U-form with 8 rotor poles that are in 4 U-forms from one another separate constructed.

  • PDF

저전압 대전류용 IPM type BLDC 전동기 설계 및 특성해석 (Design and Analysis of Characteristics of IPM type BLDC Motor for Low Voltage, High Current)

  • 윤근영;류세현;양병렬;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.77-79
    • /
    • 2004
  • This paper presents a design and characteristics analysis of interior permanent magnet (IPM) type BLDC motor for electric vehicle. In order to design of IPM type BLDC motor, surface mounted permanent magnet(SPM) type BLDC motor is used as the initial design model. According to the size of permanent magnet, the steady state characteristics is analysized by equivalent magnetic circuit method. The characteristics analysis results of the designed motor is compared with the experimental results.

  • PDF