• Title/Summary/Keyword: Magnet Wheel

Search Result 84, Processing Time 0.027 seconds

Development of Servo for Small Tracking Radars (소형 추적 레이다용 서보 개발)

  • Lee, Jong-Kuk;Lee, Seok-In;Kim, Jun-Su;Song, Tae-Seong;Eom, Young-Cheol;Ahn, Se-Hwan;Shin, Yu-Jin;Joo, Ji-han;Kwon, Jun-Beom;Kim, Sang-Wook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.21-30
    • /
    • 2022
  • This paper describes the design, manufacture, and testing of servos applicable to small tracking radars. First, Chapter 1 describes the necessity of this study. Chapter 2 describes the development of servos applicable to future tracking radars in small missile systems. Chapter 3 describes the design and test results for current control of brushed DC motors, brushless DC motors, and permanent magnet synchronous motors. And Chapter 4 describes the design and test results for speed control of the test wheel. And in Chapter 5, the results of the previous tests are summarized. In this paper, some pictures were intentionally blurred for security reasons, and the control result of test wheel was described, not the test with the developed gimbals.

Velocity Control of Magnet-Type Automatic Pipe Cutting Machine and Measurement of Slipping Using MEMS-Type Accelerometer (자석식 자동 파이프 절단기의 정속제어와 MEMS 형 가속도계를 이용한 미끄럼 측정)

  • 김국환;이성환;임성수;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.475-478
    • /
    • 2004
  • In this paper, a magnet-type automatic pipe cutting machine that binds itself to the surface of the pipe using magnetic force and executes unmanned cutting process is proposed. During pipe cutting process when the machine moves around the pipe laid vertical to the gravitational field, the gravity acting on the pipe cutting machine widely varies as the position of the machine varies. That is, with same driving force from the driving motor the cutting machine moves faster when it climbs down the surface of the pipe and moves slower when it climbs up to the top of the pipe. To maintain a constant velocity of the pipe cutting machine and improve the cutting quality, the authors adopted a conventional PID controller with a feedforward effort designed based on the encoder measurement of the driving motor. It is, however, impossible for the encoder at the motor to measure the absolute position and consequently the absolute velocity of the cutting machine in the case where the slip between the surface of the pipe and wheel of the cutting machine is not negligible. As an attempt to obtain a better estimation of the absolution angular position/velocity of the machine the authors proposes the use of the MEMS-type accelerometer which can measure static acceleration as well as dynamic acceleration. The estimated angular velocity of the cutting machine using the MEMS-type accelerometer measurement is experimentally obtained and it indicates the significant slipping of the machine during the cutting process.

  • PDF

Study for Semi-Steering system for Urban Maglev (도시형자기부상차량의 반능동 조향장치에 대한 연구)

  • Lee, Nam-Jin;Kang, Kwang-Ho;Lee, Won-Sang
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1080-1084
    • /
    • 2011
  • Urban maglev should have such characteristics as not only environmentally friendliness and excellent driving capability but also curve negotiation performance because its routes have many sharp curves. Due to normal mechanism of urban maglev its relative displacements of secondary spring are bigger than conventional railway vehicle and the centering force of levitation magnet is smaller than wheel-on-rail system. These features of maglev affect the curving negotiation and so the additional steering device is to be required on Urban maglev to improve the running performance at sharp curve of less than about R50m. Some developed urban maglev had the passive steering device which consists of mechanical linkage or hydraulic cylinder and closed-route piping. But it has drawback as complexity of layout of understructure of vehicle and functional limitation of passive mechanism regarding transient curve. These demerits could be solved by using active steering system. But it has a weak point that an active device should have actuators and additional inverter or hydraulic power source. In this paper, the semi-active steering system for urban maglev is to be introduced.

  • PDF

A Study on the Auto-MTPT Algorithm to Make the Speed-based Current-map of IPMSM for Traction of Inwheel (인휠 구동용 IPMSM의 속도 기반 전류맵 작성을 위한 Auto-MTPT 알고리즘)

  • Park, Gui-Yeol;Park, Jung-Woo;Hwang, Yo-Han;Shin, Duck-Woong;Moon, Chae-Joo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.411-417
    • /
    • 2016
  • Theoretical IPMSM control technique is complicated, and reliability is low because of the changing parameters. Further, in case of general look-up table designing method which obtains torque characteristics (according to current and speed) or torque characteristics (according to magnetic flux through the entire control region), obtaining a precise result can be difficult and has the disadvantage taking too much time to establish a current look-up table. In this paper, the new auto maximum torque point tracking (MTPT) algorithm that automatically finds the optimum stator d - q axis electric current reference through the entire speed region is devised; consequently, it could establish a 3D look-up table with torque characteristics according to current and speed. In case of using the devised auto MTPT algorithm, the result value detailed was obtained in comparison with the generalized look-up design technique, and checked to reduce the current look-up table establishment time.

Development of mobile vehicle designed by the guideline of wall-climbing mobile robot using permanent magnetic wheels (영구자석바퀴를 이용한 벽면 이동로봇의 설계치침에 의한 이동체 개발)

  • 한승철;이화조;김은찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1676-1681
    • /
    • 2003
  • The attachment of mobile vehicle is necessary for the automated operation on the inclined or vertical walls of steel structures. Since the vehicle requires attaching devices additionally, its overall efficiency can be reduced by the devices. Therefore, external shapes of mobile vehicles have to be researched to give the effective movement on the vertical face. For the design of mobile vehicle, the guideline has been derived from the modeling of wall-climbing, so that the vehicle should have a specific external shape for vertical movement due to the gravitational force. Hence, some adequate arrangement of attaching device to the mobile vehicle has been presented for the effective movement. In the experiments with four permanent magnetic wheels, a plausible result was achieved as a vertical attaching force of 185.2(N), a friction force of 153.8(N) and a curvature radius of 1.4m. The mobile vehicle should be modified according to the proposed design guideline. and then it could be applied to a specific operation as an appropriate external shape. Also, Further research is recommended on an optimal posture and a moving method in a specific application. as the attaching force ortho vehicle can be affected by its posture.

  • PDF

Comparison of Slotted and Slotless Ring-wound PM Brushless Machines for Electro-Mechanical Battery (EMB용 전동발전기 선정을 위한 슬롯형과 슬롯리스 Ring-wound형 영구자석 브러시리스 기기의 특성 비교)

  • Jang, Seok-Myeong;Jeong, Sang-Sub;Ryu, Dong-Wan;Choi, Sang-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.3
    • /
    • pp.107-114
    • /
    • 2001
  • Electro-mechanical battery (EMB) consists of a high-speed fly wheel with an integral motor/ generator suspended on magnetic bearings and in an evacuated housing. Permanent magnet (PM) machines as the EMB motor/ generator are a popular choice, since there are no excitation losses which means substantial increase in the efficiency. In this paper we present the comparison of conventional slotted and slotless ring-wound types, aimed at EMB and other high-speed drives. We firstly discuss the topology of each machine for this particular application. these machines are primarily designed as 1kW two-pole PM generator with the rated speed of 40000 rpm. the motoring torque of 0.51 Nm has to be enough to accelerate the flywheel to the rated speed. We then present the comparison of the open-circuit field, the armature reaction field and winding inductance. next we analyze the induced voltage and the developed torque per unit stack length and unit weight of different machines. Finally, we estimate and compare the losses and the efficiency at motoring and generating modes.

  • PDF

A Study on the Emergency Management of Bimodal Tram (바이모달 트램의 재해시 운영관리에 관한 연구)

  • Park, Young-Kon;Yoon, Hee-Taek;Yoon, Jong-Hack
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.118-121
    • /
    • 2008
  • Bimodal tram is a transit with no-step floor for wheel-chaired persons, with docking to the station precisely and moving on schedule like train. Because of the automatic traveling of bimodal tram to search and follow the magnet embedded in roadway, bimodal tram should be careful about rainfall, snow and wind like a car driving on roadway in respect to natural disasters. Though response procedures in emergency are different according to the passengers' boarding, emergency mobilization is needed if any emergency situation happens. Emergency mobilization is the act of preparing for major catastrophic events, which may affect public transportation systems or their service areas, by assembling and organizing resources, including people, equipment, facilities, communications systems, expert technical support, and public information systems and protocols. Mobilization is the process that ensures that the right people will deploy appropriate resources at the correct time. Effective mobilization requires a partnership of local and state agencies. Public transportation operators and systems play vital roles in response to and recovery from emergencies and other unexpected catastrophic events. These systems, and their capabilities to mobilize resources, are profoundly affected by the decisions and directives of others during these activities. In this study, we focused on the emergency management for bimodal tram and reviewed the considerations about infrastructures under natural disasters, especially heavy rainfall.

  • PDF

Technology development trend of the track brake and eddy current brake for high speed train (고속전철용 트랙제동 및 와전류제동장치 기술동향)

  • Choi Kweon-hee;Chang Dae-sung;Kim Chul-keun;Han Dong-in;Jeon young-wook
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.264-268
    • /
    • 2005
  • Most of the train brakes depends on friction between wheels and tracks. This requires braking force reduced in order not to cause wheel slides since the friction decreases as the train speed increases and consequently results in extension of braking distance. The braking system called 'Linear eddy current brake' or simply' Eddy current brake' is a braking system for making a brake independent from friction, which consists in creating electromagnet by coiling around shoes attached. to bogies; having the shoes above the tracks approached to the tracks upon acknowledgement of a braking command; and authorizing braking force that is irrelevant to friction through magnetic repulsion between electromagnet attached to the tracks and train set by the use of the electromagnet's magnet field characteristics. An electromagnetic attraction braking system that consists in pressing pole shoes attached to bogies against the tracks by using electromagnet's attraction force is called 'Electromagnetic track brake' or simply 'Track brake'. This paper has been prepared in purpose of studying technological tendencies of the eddy current brake and the track brake so that it can be utilized as fundamental data for commissioning Korean high-speed trains with the eddy current brake hereafter.

  • PDF

Investigation on Direct Driven IPMSM for Next Generation Locomotive (차세대 전동차용 직접 구동용 매입형 영구자석 동기전동기의 특성 고찰)

  • Kim, Min-Seok;Park, Ji-Seong;Kim, Dae-Kwang;Kim, Jung-Chul;Jung, Sang-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.398-403
    • /
    • 2008
  • The propulsion for locomotive application has changed from the DC motor system to the induction motor system. Although the induction motor system has almost reached the stage of maturity, this system also needs to be changed to the PM motor system for the direct drive without using reduction gear. Thus, the IPMSM (Interior buried Permanent Magnet Synchronous Motor) has been adopted to meet the locomotive driving specification. Where the wheel is directly dirven by the traction motor. In this paper, the investigation on IPMSM satisfying driving specifications for the direct drive has been performed using the advanced FEM.

Design of Fuzzy Logic Tuned PID Controller for Electric Vehicle based on IPMSM Using Flux-weakening

  • Rohan, Ali;Asghar, Furqan;Kim, Sung Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.451-459
    • /
    • 2018
  • This work presents an approach for modeling of electric vehicle considering the vehicle dynamics, drive train, rotational wheel and load dynamics. The system is composed of IPMSM (Interior Permanent Magnet Synchronous Motor) coupled with the wheels through a drive train. Generally, IPMSM is controlled by ordinary PID controllers. Performance of the ordinary PID controller is not satisfactory owing to the difficulties of optimal gain selections. To overcome this problem, a new type of fuzzy logic gain tuner for PID controllers of IPMSM is required. Therefore, in this paper fuzzy logic based gain tuning method for PID controller is proposed and compared with some previous control techniques for the better performance of electric vehicle with an optimal balance of acceleration, speed, travelling range, improved controller quality and response. The model was developed in MATLAB/Simulink, simulations were carried out and results were observed. The simulation results have proved that the proposed control system works well to remove the transient oscillations and assure better system response in all conditions.