• Title/Summary/Keyword: Magnet Levitation system

Search Result 109, Processing Time 0.025 seconds

Modeling of a Magnetic Levitation Stage and its Control (자기부상 스테이지의 모델링과 제어)

  • Yong-Joo, Kim;Jeong-Woo, Jeon;Taek-Kun, Nam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.906-915
    • /
    • 2004
  • In this paper, we address the development of magnetic levitation positioning system. This planar magnetic levitator employs four permanent magnet liner motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for driving levitation object called a platen. This stage can generate six degrees of freedom motion by the vertical and horizontal force. We derived the mechanical dynamics equation using Lagrangian method and used coenergy to express an electromagnetic force. We proposed a control algorithm for the position and posture control from its initial value to its desired value using sliding mode control. Some simulation results are provided to verify the effectiveness of the proposed control scheme.

Zero Power Levitation Control with Gap Compensator of Hybrid Magnet Levitation by Load Observer (부하 관측기에 의한 공극 보상기를 포함한 제로파워 부상제어)

  • Kim, Kwang-Min;Kim, Youn-Hyun;Chun, Yon-Do;Lee, Ju;Kim, Hak-Ryeon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.669-671
    • /
    • 2000
  • This paper introduced the scheme that it improved performance of magnetic levitation system with zero power controller. Magnetic levitation is used widely, but it is complicated and difficult to control due to having nonlinear characteristics of gap and current. So, it is proposed a scheme considered changed gap according to variable load and is verified by simulation and experiments in this paper.

  • PDF

Dynamic analysis of guideway structures by considering ultra high-speed Maglev train-guideway interaction

  • Song, Myung-Kwan;Fujino, Yozo
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.355-380
    • /
    • 2008
  • In this study, the new three-dimensional finite element analysis model of guideway structures considering ultra high-speed magnetic levitation train-bridge interaction, in which the various improved finite elements are used to model structural members, is proposed. The box-type bridge deck of guideway structures is modeled by Nonconforming Flat Shell finite elements with six DOF (degrees of freedom). The sidewalls on a bridge deck are idealized by using beam finite elements and spring connecting elements. The vehicle model devised for an ultra high-speed Maglev train is employed, which is composed of rigid bodies with concentrated mass. The characteristics of levitation and guidance force, which exist between the super-conducting magnet and guideway, are modeled with the equivalent spring model. By Lagrange's equations of motion, the equations of motion of Maglev train are formulated. Finally, by deriving the equations of the force acting on the guideway considering Maglev train-bridge interaction, the complete system matrices of Maglev train-guideway structure system are composed.

Permanent Magnet Biased Linear Magnetic Bearing for High-Precision Maglev Stage (초정밀 자기부상 스테이지의 위치제어를 위한 영구자석형 선형 자기베어링의 개발)

  • Lee, Sang-Ho;Chang, Jee-Uk;Kim, Oui-Serg;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.164-169
    • /
    • 2001
  • The active magnetic bearing has many advantages - an active positioning, no contact and lubrication free motion - and is widely used in high precision motion stages. But, the conventional magnetic bearings composed of electromagnets only are power consuming due to their bias current and have the excessive heat generation, which can make the repeatability of the positioning system worse. To overcome this drawback, we developed a novel permanent magnet (PM) biased linear magnetic bearing for a high precision magnetically levitated stage. The permanent magnets provide a bias flux and generate a bias force, and the electromagnet increases or reduces a flux of the permanent magnets and gives a levitation force. This paper presents a theoretical magnetic circuit analysis, FEM analysis and experimental data from the 1-DOF tests, and compares the theoretical power consumption of the electromagnetic bearings and the PM biased linear magnetic bearings. The PM biased linear magnetic bearing presented in this paper gives better load capacity but lower power consumption than a conventional electromagnetic bearing and will be adopted in our 6-DOF high precision linear positioning maglev stage.

  • PDF

Design and analysis of a control system for a multi-magnet levitation system

  • Kweon, Soon-Man;Kim, Seog-Joo;Kim, Jong-Moon;Kim, Kook-Hun;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1332-1336
    • /
    • 1990
  • This paper deals with some analytical and experimental aspects to control a multi-magnet suspended vehicle. Because the response of a multi-magnet vehicle shows mutually coupled interaction, an analytical description of the vehicle dynamics is necessary. For numerical computations, a linearized modelling of vehicle dynamics is dicussed and computer simulation is carried out. And for the experiment, a test vehicle suspended by four magnets has been made and investigated by local control of each magnet. Two algorithms by PID and state feedback control law are used and compared with each other. Some kinds of disturbance characteristics and coupling effects of the width change of the test vehicle are experimented.

  • PDF

Optimal design of a Linear Active Magnetic Bearing using Halbach magnet array for Magnetic levitation (자기부상용 Halbach 자석 배열을 이용한 선형 능동자기 베어링의 최적설계)

  • Lee, Hakjun;Ahn, Dahoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.792-800
    • /
    • 2021
  • This paper presents a new structure for a linear active magnetic bearing using a Halbach magnet array. The proposed magnetic bearing consisted of a Halbach magnet array, center magnet, and single coil. The proposed linear active magnetic bearing has a high dynamic force compared to the previous study. The high dynamic force could be obtained by varying the thickness of a horizontally magnetized magnet. The new structure of Halbach linear active magnetic bearing has a high dynamic force. Therefore, the proposed linear active magnetic bearing increased the bandwidth of the system. Magnetic modeling and optimal design of the new structure of the Halbach linear active magnetic bearing were performed. The optimal design was executed on the geometric parameters of the proposed linear active magnetic bearing using Sequential Quadratic Programming. The proposed linear active magnetic bearing had a static force of 45.06 N and a Lorentz force constant of 19.54 N/A, which is higher than previous research.

Levitation Control Simulation of a Maglev Vehicle Considering Guideway Flexibility (가이드웨이 유연성이 고려된 자기부상열차 부상제어 시뮬레이션)

  • Han, Jong-Boo;Lim, Jaewon;Kim, Chang-Hyun;Han, Hyung-Suk;Kim, Sung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • In magnetic levitation vehicles, the clearance between the magnet and track should be maintained within an allowable range through a feedback control loop. The flexibility of the guideway would introduce additional modes in the overall suspension system, resulting in dynamic interaction between the guideway vibration and the electromagnetic suspension control system. This dynamic interaction can be a serious problem, particularly at very low speeds or standstill, and may cause airgap instability. To optimize the overall system dynamics, an integrated dynamic model including mechanical and electrical parts and a flexible guideway as well as a control loop was developed. With the proposed model, airgap simulations at standstill were performed while varying the control gains, specifically with the aim of understanding the effects of gains of the PID controller on the airgap variation. The findings may be used to achieve a stable levitation controller design.

A Study on the Design of Transverse Flux Linear Motor in Combination with the Magnetic Levitation and Guidance (자기부상 열차용 부상 및 안내 결합형 횡자속 선형 전동기 설계에 관한 연구)

  • Gang, Do-Hyeon;Kim, Mun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.102-109
    • /
    • 2000
  • The magnetically levitated system technology is highly expected to contribute the new transportation system of the 21st century with its high velocity operation, better riding comforts, friendliness to environment and saving of maintenance labour. Its development has been completed in low speed and in high speed application. In 2005, the Transrapid with 430 km/h speed will go into operation between Berlin and Hamburg[1]. In the year 2000, the realization of JR-Maglev will be basically evaluated for commercial operation[2]. In korea, maglev test vehicle with magnet for levitation and single sided linear induction motor for propulsion is under test at 1 [km] test track in KIMM.[3,4] Here, a transverse flux linear motor in combination with the levitation and the guidance leads to a considerable high power density and high efficiency simultaneously. The designed and measured performance of transverse flux linear motor for maglev system revealed a great potential of system mass reduction.

  • PDF

Development of a Noncontacting 6 DOF Micro-Postioner Driven by Magnetic Force-Design, Modeling and Control- (자기력을 이용한 비접촉 6자유도 미소위치결정 기구의 개발-설계, 모델링 및 제어-)

  • Choi, Kee-Bong;Park, Kyi-Hwan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1164-1176
    • /
    • 1996
  • A magnetically levitated micro-positioner is implemented to avoid mechanical friction and increase precision. Since magnetic levitation system is inherently unstable, most concern is focused on a magnetic circuit design to increase the system dynamic stability. For this, the proposed levitation system is constructed by using an antagonistic structure which permits a simple design and robust stability. From the dynamic equations of motion, it is verified that the proposed magnetically levitated system is decoupled in 6 degree-of-freedom motion. Experimental results are presented in terms of time response and accuracy.

Fuzzy Controller Modeling for Electromagnetic Levitation Systems based on Clustering Algorithm (클러스터링에 기초한 자기부상시스템의 퍼지제어기 모델링)

  • Kim, Min-Soo;Byun, Yeun-Sub;Lee, Kwan-Sup
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.145-159
    • /
    • 2006
  • This paper describes the development of a clustering based fuzzy controller of an electromagnetic suspension vehicle using gain scheduling method and Kalman filter for a simplified single magnet system. Electromagnetic suspension vehicle systems are highly nonlinear and essentially unstable systems For achieving the levitation control of the DC electromagnetic suspension system, we considered a fuzzy system modeling method based on clustering algorithm which a set of input/output data is collected from the well defined Linear Quadratic Gaussian(LQG) controller. Simulation results show that the proposed clustering based fuzzy controller methodology robustly yields uniform performance with adequate gap response over the mass variation range.

  • PDF