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Modeling of a Magnetic Levitation Stage and its Control

Taek-Kun Nam® - Yong-Joo Kim* and Jeong~Woo Jeon#x

Abstract : In this paper. we address the development of magnetic levitation positioning
system. This planar magnetic levitator employs four permanent magnet liner motors.
Each motor generates vertical force for suspension against gravity, as well as horizontal
force for driving levitation object called a platen. This stage can generate six degrees of
freedom motion by the vertical and horizontal force. We derived the mechanical
dynamics equation using Lagrangian method and used coenergy to express an
electromagnetic force. We proposed a control algorithm for the position and posture
control from its initial value to its desired value using sliding mode control. Some
simulation results are provided to verify the effectiveness of the proposed control
scheme.

Key words : Magnetic Levitation, Lagrangian, Co-energy, Sliding mode Control

1. Introduction fabrication process such as an ultra

precision machining, precise alignment of

The importance of high precision optical device, and wafer steppers in
positioning mechanism is increased with semiconductor manufacturing. Such
the high demand of advanced devices could support micro or even nano
technologies delivering products with positioning accuracy, high bandwidths of
superior performance and good tolerance. operation, and  sufficient  stiffness.

We can easily found that the high Piezoelectric  actuators provide the
precision positioning mechanisms play an necessary  stiffness and  positioning
important role in the field of modern accuracy but have some restriction with
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its traveling range. Use of mechanical

bearings or cascading arrangements
suffers from slow response and the
presence of undesirable mechanical

elements such as clearances and friction.
The combination of linear motor and
air-bearing is a general strategy to
realize long stroke movement with high
velocities. But to achieve a large and
accurate travel in multiple degrees of
with
it needs complex

freedom  using linear motor
non-contact bearing,
system configuration. In contrast, the

magnetic levitation is contact-less
mechanism which enables high precision
in positioning accuracy and multiple d.o.f
(degrees of freedom) to be achieved
without mechanical guide or compounding.

In the previous works for the control of
Cho @

of magnetic

magnetic levitation positioner,

tackled

suspension actuator with one d.o.f using
(6)

position control
sliding mode control method. Mittal
addressed long travel motion control of a
suspension actuator using a
of feedback

technique and

magnetic
combination linearization
discrete-time delay
algorithm. Kim et al.
developed a magnetic levitation stage
with a six degree of freedom(6 DOF) “w

We designed a magnetic

compensation

levitation
stage as the inferred result of Kim's “.
The differences between Kim and our work
are as follows. A linear approximation
and lead-lag compensator was applied to
control the magnetic levitation stage in
Kim’'s work “. In our work. we derived a
of the

platen using Lagrangian equation and

mechanical dynamics equation
proposed configuration control algorithm

using a sliding mode control method. The

(907)

method can be

applied to a nonlinear system in the

sliding mode control
global sense, and the performance and
stability robustness to model uncertainty
and disturbances could be achieved by
control switching. Finally, we verified the
of the
scheme from a numerical simulation.

effectiveness proposed control

2. System configuration

The magnetic levitation stage is shown
in Fig. 1. This levitator is composed of
four permanent magnet linear motors.
Fach motor generates vertical force for
suspension against gravity and horizontal
force for driving platen. The actuators for
this magnetic levitator are three phase
surface-wound surface-permanent magnet

linear motors.

. .
vt - .
— S . SRR —

Fig. 1 Magnetic levitation stage

3. Control

3.1 Mechanical system modelling

In this section, we will derive the
dynamics equation of the magnetic
levitation stage. The coordinates of

platen which is the levitation part of the

stage is shown in Fig. 2. In the figure,
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X; and X, represent inertial coordinates

object coordinates frame,

Here

frame and
respectively. 71=[x,v217 and
7.=[¢,0, ¢l "dencte the

orientation vector with coordinates in the

position and

inertial coordinates frame.

x1=lwu,0,w} T and x,=1[p, ¢, 7] 7denote the
linear and angular velocity vector with
coordinates in the object coordinate frame.

N

LA

o
Zvl Y

X
Fig. 2 Coordinates of the platen

The platen’s movement path relative to
the inertial frame is given by a velocity

transformation
;}1=fl(772)k1 (1
Ji(ng)=
cdch — spcd+ cdsbsd  sgsd+ cdedsh
sgcl  cpep+ sPsbsy  — cdsd+ sOsdcd

—s6 clsp clcd
where J, is a transformation matrix

which is related to the functions of the
8 (pitch), ¢(roll).
In addition, c¢(+) and s (-) denote cos

Buler angles: ¢(yaw),

(-) and sin(-), respectively. The inverse
velocity transformation can be written

x1=7J1 (09 7, (2)

where J; is skew-symmetric matrix, i.e.

(908)

JTH9)=7X(5,). The object-fixed angular
velocity vector x.=[p g ] Tand the Euler

rate vector 7, are related to a

transformation matrix J, according to

xy=737"(n9) 7, (3

It should be noted that the angular
velocity vector x, cannot be integrated

directly to obtain actual angular
coordinates. The angular velocity of the
object-fixed reference frame with respect

to the inertial frame is given by

¢ 0 0
X9 = 0 +Cx,¢ [ +Cx‘¢C '9[0.]
0 0 y 7 4)
1 0 -s
=10 cp cOsp
0 —s¢ clch
where C,, and C,y denote Euler

angles respect to x and y axis.
From the
formulate a suitable expression for the

above relations, we can

platen’s kinetic energy

mxlTxl—I——%—szsz (5)

mal a5 250D THE 7,

T =

and potential energy

V= mgz (6)

Then we can compute the Lagrangian
according to

L=T-V (N
Finally, applying the Lagrange equation

d 0L oL _
dt(az}) 9 ~ ¢ (8)

we can get dynamics equation

Ma+hi+h(q, d=u (9)
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a=[xv,2,4,0 ¢ T is a state variables that

represent the motion of  system.

u=[F,F, F,t,t,7)7 is input vector

which denotes forces and torques acting
on the platen in the object-fixed frame.

Me=R%® is an inertia matrix and %,eR%!
and %,=R®! denote gravity and nonlinear

terms.

3.2 Electrical system modelling

In this section we will consider an
electrical dynamics for the levitation stage.

Platen

T H Hatbach

lﬁ magnet array
=ncncncdl

]I—l lk..}‘iz "xlf’:vl’;’"i’[i‘[’ ’zl [ I [ U_J_LL'_;

Stator ]

Fig. 3 Structure of the motor

The linear motor which employed in

magnetic levitator is shown in Fig.3.
Electrical dynamics of the linear motor
can be derived from the Faraday's law.
The voltage equations of three phase
motor can be written

d
Rywt—5"

o = vk k=123, (10

where R, is the resistance of winding and
A, 18 the flux linkage of each phase

winding. We can represent A,

Aip, %, v,2) =2 ipx— 19,2 (1D

We know that the flux linkage is periodic
function with respect to x direction.

Using chain-rule, we can get voltage

(909)

equations as

: . di
RiwtLylin 5yt +Ext Ent Ex=v, (12)

where
0y . 9 - e - P
L= aik‘E’”‘_ ox X Ey= oy 9 Ew= 9z %

It is well known that co-energy is
convenient quantity for expressing the
electromagnetic force. We will introduce
the co-energy to derive the electro-

magnetic force generated by the current

input. Derivative of co-energy can be
defined as "
aw,= glﬁkdik-l—fxdx—l—fydy%—fzdz (13)

Integrating eq. (13) from (0,0,0,0,0,0) to
(iy,i3.i3,%5,2), then we can get

W= 3 [ A2 dn (14)

(14) and
comparing with eq. (13), we have

Applying the chain-rule to eq.

Ak(ik,x.y,2)=Dch(il,i2,is,x,yvz) Lk=1,2,3
iy, ig,i3,%,5,2=Dy W(21,12,13xy,2) (15)
Fin,ia,i3.%,9,2)=DsWli|, iy,13,%,2)

Flit iz, 13, 2,9,20=D¢WAiy,iz,i35,%,9,2)

where

D1=a/ail,Dzza/Biz,D3=B/8i3
D,=0/0x,D5=03/3y,D¢=03/0z

Therefore, generating force f..f,,f. which

has 2#/3 phase difference can be obtained

FlininiD= 2 Fulise—4 (k=1),9,2)

Flivini= 2 Folinx—-4(k=1),.2)(16)

fz(il’iz’iS)z Zl er(l'k,x_”é'(k_l), ysz)

where F,.F,, F, are
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F . (i,x,y,2)= fo D A(n,x,y,2)dn
F (%, 2)= fo DsA(n, x,y,2)dy amn

Fli,x,y,2)= fo DeA(n, %, v, 2)dn

Now we will consider flux linkage A.
Flux linkage on the one-phase winding
can be written

A x,v,2=A (2, v,2)+ A (i, %x,9,2) (18)

where A, and A, reveal flux linkages
generated by magnet array and current
input into the stator, respectively. The
flux linkage 4, is decreased by increasing
the height of platen and changed with its
x direction movements. Then we have

Aulx, v, 2)=a(2) 2 (x), 0<a(2)<1 (19)

where a(2) 1s monotone decreasing
function and A,(x) is a periodic function
with respect to x axis. The flux linkage

A, can be represented
AAx,y,2)=L(2)1 (20)

since the inductance L is only influenced
by the height of platen. Now we can
calculate E,, E,, E, in eq.(12)

E i, x, x,5,2) = xa(2)g ,(x)

Ei%y, 52)=0 21)
E (i v, 2 9= {442 (7 () +-2E2 )
where g, denotes ga(x):%(x)l

Substituting eqa. (21) into eq. (12), we
have

L( Z) dltk

Lt o R A LD D+ (g

LG ) a(2)g o)+ 0.

(910)

Forces generated by current input will be

I ,
fe= Zl a(Dg (x= 5 k=17, (23)
fo= 3 [ L 22 1)

We applied d-q transformation to eq.
(22) and eq. (23). The d-q transformation
was introduced to separate the stator
current component that generates torque.
Then, force equations and commutation
in d-q frame do not contain the position
dependence with respect to the stator.
Therefore, non-linearity due to the
trigonometric function in the model can
be eliminated. Fig. 4 depicts d-q frame

attached on the platen )

2, D-axis

Platen A Qaxis

amk And L dea k] na s

windings
{ ;“\v'\“\*'c'a‘c'dr ,i
[ I

Stator

Fig. 4 d-q frame attached to the platen

It is shown that the q axis is
orthogonal to the d axis and leads it by
90° Applyilng d-q transformation, we
have voltage equations on d-q axis from

eq. (22)

L(2) ath = vg— Rig— é(%(flﬂ"(x)iri%zélid)
- iDg D+ L2 5, (24)

di . . .
L%t = g, Ri- (42} (442 )

— ralDg (D +2E L(2) ki

Applying d-q transformation on eq.
(23), we can get forces f.,f.

Fo= RG220+ 22 (it
S i eGP (25)

4 dz
fom Bl @it e (i)
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3.3 The relations between forces and torques

Each motor generates vertical force for
suspension against gravity, as well as
horizontal force for driving a platen.
Therefore, this stage can generate six
degrees of freedom motion by the vertical
force. The

between forces and torques on the platen

and horizontal relations

can be described as

i
F, I 0 o0 0 1 0 0 0|7
Fy 0 0 1 0 0 06 1 0 {[f
Fl_lo 1 o 1 0 1 0 1]||fm
Ty 0 by —cz b2 O by —cy by ||[Fx (26)
Ty ¢ —a; 0 —a; ¢y —a3 0 —adl|fs
ol 1=, 0 ey 0 —by 0 —a, 0 |7y
4z
where a,b;c¢; (i=1,2,3) denote the

relations between horizontal forces on the
stator and torques on the center of the
fix and fz'z,

(i=1,2,3,4) are x or y direction forces

mass of the platen.

generating on the i th stators.

respectively .

3.4 Control strategy

Based on the mechanical and electrical
dynamics equation, we can design the
control input to  achieve  desired
movement of platen. In this section, we
will propose the control algorithm to
obtain control forces and torques (F, 7 in
eq. (9) to move the platen from its initial
Here we

method

robustness in the

posture to its desired one.

consider sliding mode control
which maintains
presence of a model uncertainty and an
external disturbance.

Consider an inertia matrix in eq. (9) as

M=M°"+4M (27

(911)

where M° denotes estimated value and
4M represents an error value between
real value and estimated value. Let us
assume each components of the inertia
matrix can be estimated by its maximum

value
l AM;’;‘(CI) | < M\zj (28)

To compensate the gravity terms, we
introduce control input

u=v,+h, (29)

where v, denotes new control input
and  %,=[0,0,mg,0,0,017 is a
compen -sation term.

Substituting eq. (27) and eq. (29) into
eq. (9), then we have

gravity

a=M°" (v, +d (30)

dg, 4, @=—dM g~ h,

estimated error and nonlinear terms of

denotes an

the dynamics equation. If we consider an
value of

| dMq; | <p;, | hia ;| <%; then d can

absolute upper-limit

be estimated by scalar function d(q, %)

d=max o; (31)

where w,= p:+ %, .
To achieve tracking performance, define
the tracking errors as

e(h=qg—q, €D=a—q, (32)

where ¢ and ¢, denote current state

variable and desired state variable,

respectively.
Here we introduce switching surface
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D)= e+e

A=diag(a, az -, ag) (33)
where A is a positive definite matrix.
The control problem is to derive control
oH—0 and
sliding

input « which guarantees

preserve states ¢, ¢ on the

surface. To derive such a control input,

we can consider Lyapunov function
candidates
V=—%—070 (34)
Time differentiation of eq. (34) s
V= 0"0
= g7 e+ Ne) (35)

= oT(M° v, +M° 'd— g, +A¢&
Let’s consider new control input as
v =M°(q,—A é—Kﬁ) (36)

where KM -d
Then, we have

V=—lol (KM’ d=<0 (37)

Therefore, o(H—0 was achieved from eq.
(34) and eq. (36) as #t—o. We can see
that o()—0 means stabilization of error
variable because it makes stable error
equation e=—Ae under the condition of
the new control input eq. (36). Finally,
the control input to achieve configuration
control purpose can be obtained from eq.
(29) and eq. (36)

M S A e —O
u—M((Ir NANe— K “O’" )+h1 (88)

3.5 Simulation resuits

To illustrate the effectiveness of the
proposed control scheme, we present a
magnetic

simulation result for an

levitation stage. In the simulation, initial

value ¢, and desired value ¢, are

(0,0,250 #m,0.01,0.02,0.03) © and (0.03,0.03,,
We set the
parameters as m=5.47[kel. £=9.8[m/s%],
A=diagl3,3,3,3,3,3] . Estimated value M°
was considered to 70% of the diagonal

350um,0,0,0) T respectively.

terms of inertia matrix M. In the
simulation we introduced smoothing
unction

wu=M"(¢,—Ae—K+—2—=)+h, &=0.05

ol +¢
to remove chattering phenomenon. The
numerical simulation results for the
configuration control are shown in Fig. 5,

Fig. 6 and Fig. 7.

m] 0.04
003
0.02

0

004
Ml 5 03
002

I3 i i
2'50 05 1 15 2 25 3
time(sec}
(a) X, v, z
[rad)0.01
-y
0.005 --\\
00 05 1 15 2 25 3
frad)0.02
(=]
0.01 \
"o
0 05 1 15 2 25 3
{rad] 0.04
- ¢
0.02 \
z \
-0

0 05 1 15 2 25 3
fimefsacl

(b) ¢.,6,¢
Fig. 5 Time evolution of states
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Fig. 5 shows the time evolution of state
variables. Fig. 6 depicts control input
generated by proposed control strategy.
In the each figure, the upper graph
indicates the enlarged time axis (from 0
to 0.5 sec.) of under result.

In Fig.6, y axis values on (a), (b), (¢
and (d), (e), (f) are forces [kg-m/s’] and

torques [ kg- m?%/s?], respectively.
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0.5 1 1.5 2
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4.2

0.2
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tslme[seé

z'tslme[seczl

) =z
Fig. 6 Control inputs

Fig. 7 denotes switching surfaces. To
show the details, we omit the results
after 1 second. The reaching time to the

If the
switching

sliding surface was 0.04 (sec).
states are arrived at the
surfaces, the states will maintained on
the sliding

action.

surface by its switching
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Fig. 7 Switching surfaces

From the simulation results, we see
that the desired control purpose was
achieved by proposed control scheme.

4. Conclusions

In this addressed

configuration control for the magnetic

paper, we

levitation stage. We derived dynamic
equation of the platen and electrical
system dynamics using co-energy. We
also proposed control strategy which can
control its position and posture. To derive
the control input, we applied sliding
mode control method which can maintain
the performance and stability robustness
Finally, we

for model uncertainty.

(914)

verified an effectiveness of the control
algorithm by numerical simulation.
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