• Title/Summary/Keyword: Magnet Hall Sensor

Search Result 80, Processing Time 0.022 seconds

DFSS-Based Design of a Hall-Effect Rotary Position Sensor (DFSS 를 이용한 홀 효과 기반 회전형 위치 센서의 설계)

  • Kim, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.231-236
    • /
    • 2012
  • This work presents the application of the DFSS (Design for Six Sigma) methodology to optimizing both the linearity and the sensitivity of the output voltage of a Hall-effect rotary position sensor. To this end, the dimensions and relative positions of a permanent magnet with reference to a Hall sensor are selected as the design factors for a full factorial design. In order to evaluate the output voltage of the rotary position sensor at each run in the experimental design, analytical solutions to the magnetic flux density were obtained using the Biot-Savart law and the relations between the magnetic flux density and the output voltage intrinsic to a Hall sensor. Through measurements of the improved output voltage of the rotary position sensors manufactured using the optimized design factors, the proposed method is shown to be simple and practical.

Development of the Non-contacted Gear Detection Sensor for a Manual Transmission (수동변속기용 비접촉식 변속단 감지센서 개발)

  • Han, Chang-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-7
    • /
    • 2013
  • The present paper relates to a development of the Gear Detection Sensor for automotive manual transmission. To detect air gap from control finger to detecting zone of sensor based on non-contacted method, permanent magnet and linear type Hall IC are mounted in this sensor. Control finger is machined to 3 step heights to detect 3 gear stages such as In-Gear, Normal and Rear. After conducting actual experimentation based on exclusive Jig and FEM, it is described to consider possibility for automotive application of Gear Detection Sensor.

Detecting of Periodic Fasciculations of Avian Muscles Using Magnetic and Other Multimedia Devices

  • Nakajima, Isao;Tanaka, Sachie;Mitsuhashi, Kokuryo;Hata, Jun-ichi;Nakajima, Tomo
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.293-302
    • /
    • 2019
  • In the past, there was a theory that influenza wasn't transmitted directly from birds but was infected to humans via swains. Recently, molecular level research has progressed, and it was confirmed that the avian influenza virus can directly infected to human lung and intestinal epithelial cells. Three pandemicsin the past 100 years were also infected to humans directly from birds. In view of such scientific background, we are developing a method for screening sick birds by monitoring the physiological characteristics of birds in a contactless manner with sensors. Here, the movement of respiratory muscles and abdominal muscles under autonomic innervation was monitored using a magnet and Hall sensor sewn on the thoracic wall, and other multimedia devices. This paper presents and discusses the results of experiments involving continuous periodic noise discovered during flight experiments with a data logger mounted on a Japanese pheasant from 2012 to 2015. A brief summary is given as the below: 1. Magnet and Hall sensor sewn to the left and right chest walls, bipolar electrocardiograms between the thoracic walls, posterior thoracic air sac pressure, angular velocity sensors sewn on the back and hips, and optical reflection of LEDs (blue and green) from the skin of the hips allow observation of periodic vibrations(fasciculations) in the waves. No such analysis has been reported before. 2. These fasciculations are presumed to be derived from muscle to maintain and control air sac pressure. 3. Since each muscle fiber is spatially Gaussian distributed from the sympathetic nerve, the envelope is assumed to plot a Gaussian curve. 4. Since avian trunk muscles contract periodically at all time, we assume that the sympathetic nerve dominates in their control. 5. The technique of sewing a magnet to the thoracic wall and measuring the strength of the magnetic field with a Hall sensor can be applied to screen for early stage of avian influenza, with a sensor attached to the chicken enclosure.

Remote gas meter-reading system using magnetic sensor (자계 센서를 이용한 원격 가스 검침 시스템)

  • Koo, JaYl
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.90-94
    • /
    • 2002
  • This paper is related to remote meter-reading using magnetic sensor. Scan system which is developed recently has week point of temperature, humidity, dust, oscillation To solve these problems, this study used magnetic action to measure the consumption of gas. Gas consumption was detected by interaction of a permanent magnet and hall element. Permanent magnet was pasted on rolling change-gear in normal gas meter and hall sensor was pasted on the external wall of normal gas meter. This experiment proved high accuracy and wasn't influenced by temperature, humidity, oscillation and dust

A Study on the Discrimination of the Overhead Stirrer Impeller using the Dimensions of Permanent Magnets (영구자석의 형상을 이용한 오버헤드 교반기용 임펠러 종류의 인식에 관한 연구)

  • Lee, Ho-Cheol;Kim, Gi-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.52-57
    • /
    • 2019
  • To develop a stirring device that can automatically measure the viscosity of a fluid, the impeller type of the device must be recognized without making contact. In this study, we propose a method to discriminate the type of impellers using the changes in the magnetic field. Permanent magnets are inserted into a hollow hole of the impellers, and the change of the magnetic field is measured by a hall sensor. All experimental results are compared with the FEM analysis results. The results show that with the increase in diameter and length of the magnet inserted into the impeller, the magnitude of the magnetic flux density increases. The magnetic field is more sensitive to the change in the magnet diameter than to the change in magnet length. In order to reduce the machining costs, however, it is advantageous to change the magnet length instead of the magnet diameter.

Performance Improvement of Position Estimation by Double-PLL Algorithm in Hall Sensor based PMSM Control (Double-PLL을 이용한 홀 센서 기반 PMSM 제어의 위치 추정 성능 개선)

  • Lee, Song-Cheol;Jung, Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.270-275
    • /
    • 2017
  • This paper proposes a double-phase-locked-loop (PLL) to improve the performance of position estimation in hall sensor-based permanent magnet synchronous motor control. In hall sensor-based control, a PLL is normally used to estimate the rotor position. The proposed Double-PLL consists of two PLLs, including a reset type integrator. The motor control is more accurate and has better performance than conventional PLL, such as a small estimated position ripple. The validity of the proposed algorithm is verified by simulations and experiments.

A Sensing System of the Halbach Array Permanent Magnet Spherical Motor Based on 3-D Hall Sensor

  • Li, Hongfeng;Liu, Wenjun;Li, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.352-361
    • /
    • 2018
  • This paper proposes a sensing system of the Halbach array permanent magnet spherical motor(PMSM). The rotor position can be obtained by solving three rotation angles, which revolves around 3 reference axes of the stator. With the development of 3-D hall sensor, the position identification problem of the Halbach array PMSM based on rotor magnetic field is studied in this paper. A nonlinear and serious coupling relationship between the rotation angles and the measured magnetic flux density is established on the basis of the rotation transformation theory and the magnetic field model. In order to get rid of the influence on position detection caused by the harmonics of rotor magnetic field and the stator coil magnetic field, a sensor location combination scheme is proposed. In order to solve the nonlinear equation fast and accurately, a new position solution algorithm which combines the merits of gradient projection and particle swarm optimization(PSO) is presented. Then the rotation angles are obtained and the rotor position is identified. The validity of the sensing system is verified through the simulation.

Permanent Magnet Synchronous Motor Vector Control Using Rectangular 2 Hall Sensors (구형파 2-Hall Sensor를 이용한 영구자석형 동기전동기의 벡터 제어)

  • Won, Chung-Yuen;Kong, Tae-Woong;Lee, Jung-Hyo;Yu, Jae-Sung;Lee, Won-Cheol;Kim, Jae-Hyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.120-127
    • /
    • 2008
  • This paper proposes a new vector control method using two rectangular hall sensors instead of using the expensive encoder and resolver. The proposed method estimates the speed and motor position by using the quadruple of two hall sensors signals instead of encoder signal. The proposed new speed estimation method is stable under the rated speed range. This algorithm will be able to moderate prices of the whole system and apply to the condition unfitted with encoder and resolver.

Comparison of Simultaneously Measured Pulse Waveforms from Both Hands using Permanent Magnet-Hall Pulsimeter Sensor (영구자석-홀 맥진센서를 이용한 양손 동시측정 맥진파형 비교 연구)

  • Yoo, Gi-Doo;Hwang, Sung-Gi;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.27-31
    • /
    • 2012
  • Two radially arterial pulses of both hands using the prototype of a clamping clip pulsimeter equipped with permanent magnet and Hall device are compared and analyzed. The phase difference of two pulse wave signals is dominantly presented from the simultaneous measuring clinical pulse wave signals for twenty two male participants at their 20's. It is possible to analyze that the fast and slow pulse wave for right hand and left hand depend on the muscle property of arms rather than the total length of blood vessel due to cardiovascular circulatory system.

Magnetic Pole Structure of Electro-Magnet for Forming Uniform Magnetic Field (평등자계 형성용 전자석 자극 구조에 관한 연구)

  • 김정태;이승면;조현준;김훈년
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.515-518
    • /
    • 2002
  • In this study, the ellipsoidal cap type magnetic pole structure was proposed for the electro-magnet in B-H curve tracer. From the simulation for the electro-magnet without specimen, the area of effective uniform field(99% range for the central field value) was considerably increased in case of the newly proposed ellipsoidal cap type magnetic pole than that of the conventional simple-inclined cap type magnetic pole. Also, through the simulation for the electro-magnet with permanent magnet specimen(NaFe30), the optimal Positions of the magnetic field measurement sensor(Hall sensor) were found out in each case and the errors were decreased in case of the newly proposed ellipsoidal cap type magnetic pole.

  • PDF