• Title/Summary/Keyword: Magnesium alloy

Search Result 562, Processing Time 0.034 seconds

A Study on Warm Forging of Magnesium Alloy Impeller (온간 단조성형기술을 이용한 마그네슘합금의 임펠러 제조공정연구)

  • Kim, S.D.;Kwon, Y.N.;Lee, J.H.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.288-292
    • /
    • 2007
  • This study focuses on the warm forging of a magnesium alloy impeller used for the fuel cell. The impeller has the very complicated shape with sharply twisted blade and thus is generally produced by mechanical machining or casting process. However, since these technologies give the high manufacturing cost or poor mechanical properties, the forging technology is required to make the high-quality impeller with the lower manufacturing cost. In order for production of the impeller by warm forging technology, the parametric studies using finite element analyses were carried out to find the optimal perform shape of impeller. Based on the FE simulation results, dies for impeller forging were designed and the resultant forged impeller was shown.

Constitutive Modeling of AZ31B Magnesium Alloys (AZ31B 마그네슘 합금 판재의 구성식 개발)

  • Lee, M.G.;Chung, K.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.234-238
    • /
    • 2007
  • Magnesium alloy sheets in room temperature have unusual mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening behavior. In this paper, the continuum plasticity models considering the plastic behavior of AZ31B Mg alloy sheet were derived. A new hardening law based on modified two-surface model was developed to consider the general stress-strain response of metals including Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. To include the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified by adding anisotropic constants.

Prediction of Springback by Using Constitutive Equations of Mg Alloy Sheets (마그네슘 합금 구성식을 이용한 스프링백 예측)

  • Lee, M.G.;Chung, K.;Kim, S.J.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.97-101
    • /
    • 2008
  • Unique constitutive behavior of magnesium alloys as one of hexagonal close packed(hcp) metals has been implemented into the commercial finite element program ABAQUS. The constitutive equations can represent asymmetry in tension-compression yield stresses and flow curves. For the verification purpose, the springback of AZ31B magnesium alloy sheet was measured using the unconstrained cylindrical bending test proposed in Numisheet'2002 benchmark committee. Besides the developed constitutive models, the isotropic models based on tensile and compressive properties were also considered for comparison purpose. The predicted results by the finite element analysis and corresponding experiments showed enhanced prediction capability in springback analysis.

Internal Friction Behavior in AZ31 Magnesium Alloy after Annealing Treatment (AZ31 마그네슘 합금의 어닐링 이후 내부마찰 거동)

  • Kwak, Juho;Kang, Changyong;Kim, Kwonhoo
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.87-93
    • /
    • 2018
  • Specimens were machined out from hot-rolled AZ31 magnesium alloy, and deformed at 623K with rolling reduction of 30%. After hot rolling, specimens were annealed at various range of temperature and time. In this study, static recrystallization was occurred during heat treatment, however, variation of main component and intensity of texture was not revealed. The results of microstructure observation, damping capacity test and dislocation mechanism indicated that increasing of damping capacity was caused by grain growth. It means that grain size is effective factor to damping capacity.

Multi-Stage forming Process Applied to Warm Drawing of Magnesium Alloy AZ31 Sheet (마그네슘 합금 AZ31 판재의 온간 드로잉에서의 다단 성형 공정 적용)

  • Kim, H.K.;Kim, G.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.242-245
    • /
    • 2007
  • In the present investigation, the multi-stage warm drawing process was applied to the magnesium alloy AZ31 sheet to examine the feasibility of multi-stage forming process as a high formability product making process. For that purpose, a multi-stage drawing die system with heating module was developed, and the AZ31 sheets of different sizes were consecutively drawn by the multi-stage drawing die. The obtained drawn cups of AZ31 showed that the multi-stage drawing provided the better formability than the single stage drawing in terms of drawing depth without cup defects such as wrinkles or fractures. The sheet formability improvement by using the multi-stage drawing die system against the single stage was also analyzed in terms of the finite element analysis of material state variables evolution.

  • PDF

Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature (AZ31B 마그네슘합금 판재의 고온 스프링백 특성)

  • Choi, S.C.;Lee, H.S.;Kim, H.J.;Lee, K.T.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.60-63
    • /
    • 2007
  • The effect of process parameters on springback of AZ31B magnesium alloy sheet was investigated by performing 2D draw bending test at the elevated temperatures. And also the springback characteristics were studied different blank holding forces between 30 to 250 kgf. Springback was considerably reduced at higher temperatures than $200^{\circ}C$. The blank holding force in the range used, however, had little influence on springback in isothermal tests. For a given temperature, springback decreased with increasing blank holding force in non-isothermal tests.

  • PDF

Creep Properties of AZ31 Magnesium Alloy at Elevated Temperature (AZ31 마그네슘 합금의 고온 크리프 특성)

  • Chung, Chin-Sung;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.20-26
    • /
    • 2009
  • The creep deformation behavior of AZ31 magnesium alloy was examined in the temperature range from 573 to 673K (0.62 to 0.73 Tm) under various constant stresses covering low strain rate range from $4{\times}10^{-9}\;s^{-1}$ to $2{\times}10^{-2}\;s^{-1}$. At low stress level, the stress exponent for the steady-state creep rate was ~3 and the present results were in good agreement with the prediction of Takeuchi and Argon model. At high stress level, the stress exponent was ~5 and the present results were in good agreement with the prediction of Weertman model. The transition of deformation mechanism from solute drag creep to dislocation climb creep could be explained in terms of solute-atmospherebreakaway concept.

Effect of Mean Stress on Probability Distribution of Random Grown Crack size in Magnesium Alloy AZ31 (평균응력이 AZ31 마그네슘합금의 렌덤진전균열크기 확률분포에 미치는 영향)

  • Choi, Seon-Soon;Lee, Ouk-Sub
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.536-543
    • /
    • 2009
  • In this paper the mean stress effects on the probability distribution of the random grown crack size at a specified loading cycle are studied through the fatigue crack propagation tests, which are conducted on the specimens of magnesium alloy under four different stress ratios. Through 80 replicates the probability distributions of the grown crack size are obtained. The goodness-of-fit for probability distributions of the random grown crack size are investigated by Anderson-Darling test and the best fit for those probability distributions is found to be a 3-parameter Weibull distribution. The effects of the mean stress on the probability distribution of the random grown crack size are also estimated.

  • PDF

Chracterization of Ng alloy with dry and wet backfill under accelerated C.P. condition (백필 상태에 따른 마그네슘 양극의 가속수명시험 특성에 관한 연구)

  • Park, Kyung-Wha;Kim, Dae-Kyeong;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Ha, Yoon-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1933-1935
    • /
    • 2005
  • In this investigation, the electrochemical behaviour of magnesium alloy anode was studied by using electrochemical methods and the performance of magnesium alloy anode was observed with dry and wet backfill under accelerated cathodic protection. This paper reports the data collected at the laboratory and field sites over one year exposure of magnesium anode under cathodic protection donditions.

  • PDF

Microstructural Feature of Discontinuous Precipitates Formed by Furnace Cooling in AZ91 Magnesium Alloy (AZ91 마그네슘 합금에서 노냉으로 생성된 불연속 석출물의 미세조직 특징)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.5
    • /
    • pp.231-236
    • /
    • 2018
  • The purpose of this study was to investigate the microstructural characteristics and hardness distribution of AZ91 magnesium alloy furnace-cooled to room temperature after solution treatment, and to compare the results with those of as-cast condition. The as-cast alloy showed a partially divorced eutectic ${\beta}(Mg_{17}Al_{12})$ phase and discontinuous precipitates (DPs) with a lamellar morphology, while only DPs were observed in the furnace-cooled alloy. The DPs in the furnace-cooled AZ91 alloy had various apparent interlamellar spacings, which would be ascribed to the different transformation temperatures during the furnace cooling. The average hardness for the furnace-cooled alloy is similar to that for the as-cast alloy. It is interesting to note that the hardness values of the furnace-cooled alloy were distributed over a narrower range than those of the as-cast alloy. This is likely to be caused by the relatively more homogeneous microstructure of the furnace-cooled alloy in comparison with the ascast one.