Browse > Article
http://dx.doi.org/10.12656/jksht.2018.31.5.231

Microstructural Feature of Discontinuous Precipitates Formed by Furnace Cooling in AZ91 Magnesium Alloy  

Jun, Joong-Hwan (Advanced Process and Materials R&D Group, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Society for Heat Treatment / v.31, no.5, 2018 , pp. 231-236 More about this Journal
Abstract
The purpose of this study was to investigate the microstructural characteristics and hardness distribution of AZ91 magnesium alloy furnace-cooled to room temperature after solution treatment, and to compare the results with those of as-cast condition. The as-cast alloy showed a partially divorced eutectic ${\beta}(Mg_{17}Al_{12})$ phase and discontinuous precipitates (DPs) with a lamellar morphology, while only DPs were observed in the furnace-cooled alloy. The DPs in the furnace-cooled AZ91 alloy had various apparent interlamellar spacings, which would be ascribed to the different transformation temperatures during the furnace cooling. The average hardness for the furnace-cooled alloy is similar to that for the as-cast alloy. It is interesting to note that the hardness values of the furnace-cooled alloy were distributed over a narrower range than those of the as-cast alloy. This is likely to be caused by the relatively more homogeneous microstructure of the furnace-cooled alloy in comparison with the ascast one.
Keywords
AZ91; discontinuous precipitates; furnace cooling; hardness; interlamellar spacing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. L. Mordike and T. Ebert : Mater. Sci. Eng. A 302 (2001) 37.   DOI
2 A. K. Dahle, D. H. StJohn and G. L. Dunlop : Mater. Firum 24 (2000) 167.   DOI
3 K. Hono, C. L. Mendis, T. T. Sasaki and K. Oh-ishi : Scripta Mater. 63 (2010) 710.   DOI
4 M. S. Dargusch, K. Pettersen, K. Nogita, M. D. Nave and G. L. Dunlop : Mater. Trans. 47 (2006) 977.   DOI
5 W. Zheng, S. Li, B. Tand and D. Zeng : China Found. 3 (2006 )270.
6 C. Lv, T. Liu, D. Liu, S. Jiang and W. Zeng : Mater. Des. 33 (2012) 529.   DOI
7 W. Zhou, T. Shen and N. N. Aung : Corros. Sci. 52 (2010) 1035.   DOI
8 H. Pan, F. Pan, R. Yang, J. Peng, C. Zhao, J. She, Z. Gao and A. Tang : J. Mater. Sci. 49 (2014) 3107.   DOI
9 K. N. Braszczynska-Malik : J. Alloy Compd. 477 (2009) 870.   DOI
10 K. Fujii, K. Matsuda, T. Gonoji, K. Watanabe, T. Kawabata, Y. Uetani and S. Ikeno : Mater. Trans. 52 (2011) 340.   DOI
11 S. Takeshita, C. Watanabe, R. Monzen and S. Saikawa : J. Jpn. Inst. Light Met. 64 (2014) 470.   DOI
12 M. X. Zhang and P. M. Kelly : Scripta Mater. 48 (2003) 647.   DOI
13 S. Celotto : Acta Mater. 48 (2000) 1775.   DOI
14 N. Ridley : Metall. Trans. A 15A (1984) 1019.
15 C. Zener : Trans. AIME 167 (1946) 550.
16 J. H. Jun : J. Alloys Compd. 75 (2017) 237.
17 K. N. Braszczynska-Malik : Arch. Found. Engineering 8 (2008) 19.