• Title/Summary/Keyword: Magnesia cement

Search Result 27, Processing Time 0.024 seconds

Solidification of Heavy Metal Ions Using Magnesia-phosphate Cement (인산염 마그네시아 시멘트에 의한 중금속 이온 고정화)

  • Choi, Hun;Kang, Hyun-Ju;Song, Myung-Shin;Jung, Eui-Dam;Kim, Ju-Seng
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • Since 1980's, many mines have been closed and abandoned due to the exhaustion of deposits and declining prices of international mineral resources. Because of the lack of post management for these abandoned mines, Farm land and rivers were contaminated with heavy metal ions and sludge. We studied on the solidification/stabilization of heavy metal ions, chromium ions and lead ions, using magnesia-phosphate cement. Magnesia binders were used calcined-magnesia and dead-burned magnesia. Test specimens were prepared by mixing magnesia binder with chromium ions and lead ions and activators. We analyzed the hydrates by reaction between magnesiaphosphate cement and each heavy metal ions by XRD and SEM-EDAX, and analyzed the content of heavy metal ions in the eruption water from the specimens for the solidification and stabilization of heavy metal ions by ICP. The results was shown that calcined magnesia binder is effective in stabilization for chromium ions and dead-burned magnesia binder is effective in stabilization for lead ions.

$Fe_2O_3$ 함유 MgO C1'를 적용한 시멘트 Kiln용 염기성 벽돌의 고온 특성

  • 김동한;엄창중;이승제;김상재
    • Cement Symposium
    • /
    • no.30
    • /
    • pp.132-138
    • /
    • 2003
  • 시멘트 kiln용 염기성 벽돌의 시멘트 coating 부착성과 고온 강도 특성 향상을 위하여 $Fe_2O_3$함유 magnesia clinker을 적용하였다. $Fe_2O_3$ 함유 magnesia clinker가 사용된 Magnesia-Chromite질 벽돌은 통기율이 크게 저하되었고 상온 및 고온 꺽임강도가 증가되었다. 특히, $Fe_2O_3$ 함유 magnesia clinker를 적용하여 약 1$\%$$Fe_2O_3$ 함량을 가지는 Magnesia-Spinel질 벽돌은 고온에서 높은 꺽임 강도, 열충격 저항성, 향상된 시멘트 coating 부착성을 나타내었다.

  • PDF

Solidification of Heavy Metal Ions using Magnesia-Phosphate (인산염 마그네시아에 의한 중금속 이온 고정화)

  • Song, Myong-Shin;Kang, Hyun-Ju;Choi, Hun;Kim, Ju-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.317-318
    • /
    • 2010
  • At the latest industry develops, heavy metals or sludge contaminated surrounding farm land and rivers. In this study, wished to solve problem by saying contaminated sludge and tailing and heavy metals to do solidification using Magnesia phosphate cement. Confirmed through above experiment that magnesia is effect in solidification and stabilization of chromium and lead.

  • PDF

The application of Phosphate Magnesia Cement for Solidification of Soil (토양 고형화를 위한 인산염 마그네시아 시멘트 적용 연구)

  • Choi, Hun;Choi, Jun-Ok;Song, Myong-Shin;Moon, Chang-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.533-536
    • /
    • 2008
  • This study is the application of phosphate magnesia cement for solidification of soils. The object of the study is the application of the pavment of the farm roads. The new pavement method must be environmental, ecologic and durable. So, for solidification of farm road's soil, we use magnesia cement as quick setting, high strength materials. At magnesia phosphate cement, mixing ratio of mono ammonium phosphate and magnesia is 4:6 and w/b is 50 wt%, it show 14 MPa of compressive strength, and high hydration heat. Solidified soils that mixing ratios of magnesia cement and soil are 4:6 and 5:5 have very high durability for freezing and thawing.

  • PDF

Performance of Magnesia Cement Using MgCO3 and Serpentine

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.116-121
    • /
    • 2016
  • The amount of carbon dioxide ($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical methods of reducing $CO_2$ in building materials is the addition of slag and fly ash, like pozzolan material another method is to reduce $CO_2$ production by developing carbon negative cement. MgO-based cement from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, basic research on magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as the main starting materials, as well as blast furnace slag for the mineral admixture, was carried out for industrial waste material recycling. In order to increase the overall hydration activity, $MgCl_2$ was also added. In the case of the addition of $MgCl_2$as accelerating admixture, there was a promoting effect on the compressive strength. This was found to be due to the production of needle-like dense Mg-Cl hydrates. Mgnesia cement has a high viscosity due to its high specific surface area therefore, when the PC-based dispersing agent was added at a level of more than 1.0%, it had the effect of improving fluidity. In particular, the addition of $MgCl_2$ in magnesia cement using $MgCO_3$and magnesium silicate ore (serpentine) as main starting materials led to a lower expansion ratio and an increase in the freeze-thaw resistance finally, the addition of $MgCl_2$ as accelerating admixture led to good overall durability.

A Study on the Solidification of Heavy Metal Ion by Phosphate Magnesia Cement (인산염 마그네시아 시멘트에 의한 중금속 이온 고정화에 관한 연구)

  • Choi, Hun;Choi, Jung-Ok;Kang, Hyun-Ju;Song, Myong-Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.321-322
    • /
    • 2009
  • when the polluted soil with heavy metal ions was solidified using magnesia-phosphate cement, heavy metal ions were rarely eluted. Furthermore, the results cf SEM-EDS analysis showed that heavy metal ions in polluted soil turns into insoluble solid solution by magnesia-phosphate cement, it come to have the effect to stabilize heavy metals.

  • PDF

characteristics of Magnesia Dam Block for Tundish Vessel in Steel Making Process (턴디쉬용 마그네시아질 댐블록의 제조와 그특성)

  • 정두화;김상모;이석근
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.876-885
    • /
    • 1999
  • In order to develop high performance basic dam block for tundish vessel in steel-making binders and additives on hydration and thermal characteristics of magnesiz castable refractories were studied. Crack initiation and propagation in cement bonded magnesia castables due to slaking of magnesia clinker at drying process were suppressed by using spinel clinker instead of magnesia powder. In case of Na2O$.$2CaO$.$P2O5(NC2P) bonded castable crack initiation due to slaking of magnesia clinker did not occur but bending strength at high temperature was low. Mechanical properties of NC2P bonded castable refractories at high temperature were improved by using magnesia clinker that contains low SiO2 contents.

  • PDF

An Experimental Study on the Properties of Ultra Rapid Hardening Mortar Using Magnesia-Phosphate Cement (마그네시아 인산염 시멘트를 사용한 보수용 초속경 모르타르의 특성에 관한 실험적 연구)

  • Ahn, Moo-Young;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.109-116
    • /
    • 2007
  • Building structures are generally large in size and have a long life, and the construction of such structures requires the investment of a huge amount of money and social infrastructure. Furthermore, building structures are closely related to people's life. Recently, however, the rapid development of society has been worsening air pollution, which is in turn accelerating the degradation of building structures. Thus, the safety of building structure is emerging as a critical issue. To cope with this problem, the government enacted "The Special Act on Safety Control for Infrastructure" but we need engineers' higher concern over the maintenance and reinforcement of existing structures. Recently researches are being made actively on repair mortar using ultra rapid hardening cement for recovering the performance of structures. The present study conducted an experiment on the basic physical properties of ultra rapid hardening mortar for repairing and reinforcing building structures using magnesia cement and mono-ammonium phosphate. In the experiment, we changed the water-cement ratio and carried out replacement at different ratio of MAP/MgO(%). We used retarder to have working life, and made comparative analysis through evaluating working life and fluidity and measuring strength by age.