• Title/Summary/Keyword: Magnesia

Search Result 128, Processing Time 0.029 seconds

Sintering of Magnesia During Hot Pressing (Hot Press에 의한 마그네시아의 소결)

  • 오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.2
    • /
    • pp.152-156
    • /
    • 1982
  • The behavior of magnesite during hot pressing is studied from 80$0^{\circ}C$ to 110$0^{\circ}C$ by Knoop hardness test, X-ray diffraction and electron microscopy. The growth of magnesia crystallite in magnesite is observed at 110$0^{\circ}C$ and crystallite size is about 2 microns. It is also observed that hot pressing showes enhanced sinterability comparing to ordinary pressure-less sintering. The magnesia body with 95 per cent of theoretical density is obtained by hot pressing at relatively low temperature such as 110$0^{\circ}C$.

  • PDF

An Experimental Study on the Fluidization and Heat Transfer Characteristics in the Gas-Solid Fluidized Bed Furnace (기일고(氣一固) 유동층노내(流動層爐內) 유동화(流動化) 및 전열특성(傳熱特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Choi, Gug-Gwang;Park, Jong-Suen
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.55-63
    • /
    • 1989
  • In this paper, the fluidization characteristics of the magnesia fluidized bed and the heat transfer characteristics with the specimen (SM55C) plunged in the bed have been investigated. To characterize the fluidization, the minimum fluidizing velocities and the relation ships between bed voidage and fluidization rate and obtained. To characterize heat transfer, the experiments for finding heating time transfer effect have been carried out by varying the magnesia particles sizes. optimum heating condition in the magnesia fluidized bed is obtained.

  • PDF

Early-Age Compressive Strength of Magnesia-Phosphate Composite with Phosphate Type (인산염 종류에 따른 마그네시아-인산염 복합체의 초기 압축강도 특성)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.185-186
    • /
    • 2016
  • Four mortar mixes tested to evaluate the early-age compressive strength of magnesia-phosphate composite with phosphate type. Monopotassium phosphate, dipotassium phosphate, ammonium dihydrogen phosphate and diammonium phosphate used as phosphate. Test results show that the compressive strength of mortar used monopotassium phosphate as phosphate was highest, while compressive strength of mortars used dipotassium phosphate and diammonium phosphate as phosphate were not developed.

  • PDF

Zirconia galvani sensor for the measurement of oxygen activity (용존산소활량 측정용 지르코니아 갈바니 센서)

  • Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.441-448
    • /
    • 2009
  • Magnesia partially stabilized zirconia(Mg-PSZ) solid electrolytes for an improvement of thermal shock resistance, which is suitable for the measurement of oxygen activity in a molten steel, were prepared by post-thermal aging treatment. The steelmaking oxygen sensor elements were formed by an injection molding method, sintered at $1650^{\circ}C$, and then thermal aged ranged from 1250 to $1400^{\circ}C$. Sintered density and porosity were decreased as increasing the magnesia content in a zirconia-magnesia solid solution. Fractions of cubic phase to the synthesized Mg-PSZ solid electrolytes were ranged from 13.13 to 79.54.% after post-thermal aging treatment. Very dense microstructure without voids in the grains was obtained by the post-thermal aging process. Fine tetragonal phase crystallites precipitated on the cubic surface during post-thermal aging up to $1300^{\circ}C$ improve a thermal shock resistance and reappearance of electro motive force(EMF) curve.

The application of Phosphate Magnesia Cement for Solidification of Soil (토양 고형화를 위한 인산염 마그네시아 시멘트 적용 연구)

  • Choi, Hun;Choi, Jun-Ok;Song, Myong-Shin;Moon, Chang-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.533-536
    • /
    • 2008
  • This study is the application of phosphate magnesia cement for solidification of soils. The object of the study is the application of the pavment of the farm roads. The new pavement method must be environmental, ecologic and durable. So, for solidification of farm road's soil, we use magnesia cement as quick setting, high strength materials. At magnesia phosphate cement, mixing ratio of mono ammonium phosphate and magnesia is 4:6 and w/b is 50 wt%, it show 14 MPa of compressive strength, and high hydration heat. Solidified soils that mixing ratios of magnesia cement and soil are 4:6 and 5:5 have very high durability for freezing and thawing.

  • PDF

Odor Reduction of Pig Wastewater Using Magnesia (in-situ test) (마그네시아를 이용한 돈분 폐수의 악취 저감(현장 시험))

  • Bae, Su Ho;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.3
    • /
    • pp.202-208
    • /
    • 2022
  • In this study, we tried to obtain the optimal conditions to reduce odors generated from pig wastewater using magnesia (MgO) through in-situ test after producing a reactor for removing odors. For this purpose, the filling amount of magnesia, the injection amount of pig wastewater, the aeration method, the aeration amount and the aeration time were considered. The field experiment was conducted at Cheongwoon Livestock Farm, which has a pig wastewater reservoir. As the amount of magnesia added to the weight of wastewater (500 kg) increases, the amount of ammonia (NH3) and hydrogen sulfide (H2S) generated tended to gradually decrease. As a result of the test, ammonia and hydrogen sulfide in the pig wastewater decreased up to 65% and 77%, respectively, for 2 days aeration after 0.8% of magnesia was added to the reaction tank. The initial pH of the pig wastewater in the reactor was 8.2, and the pH was found to be 9.2 when magnesia was added up to 0.8%. In the light of this trend, it can be known that magnesia gradually increases the pH in the pig wastewater and makes it weakly alkaline. As the pH increases, part of the ammonia gas present in the pig wastewater vaporizes into the air and the remaining part is removed by precipitation after chemical bonding with dissolved magnesium ions and phosphate ions. In order to remove the odor of pig wastewater and turn it into compost, most of the existing livestock farms go through a six-month aeration process using microorganisms. In contrast, the current study proved the effect of removing odors from pig wastewater within 2 days through chemical reactions that do not affect microbial activity.

Electrical Properties of Gadolinium-doped Ceria/Magnesia (CGO/MgO) Composite Electrolytes (Gadolinium-doped Ceria/Magnesia (CGO/MgO) 복합체 전해질의 전기적 특성 분석)

  • Jo, Seung-Hwan;Muralidharan, P.;Kim, Do-Kyung
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.470-474
    • /
    • 2008
  • Composites of gadolinium-doped ceria/magnesia(CGO/MgO) were synthesized and characterized for the electrolytes of intermediate temperature solid oxide fuel cells. XRD and SEM results revealed that composite electrolytes consisted of their own phases after sintering at $1400^{\circ}C$ without noticeable solid solution of Mg into CGO. As the MgO content increased, the total electrical conductivity decreased, which might be attributed to the decrease of grain boundary conductivity, possibly due to the lowering of the continuity of the CGO grains and blocking effects of the insulating MgO phase. The space charge effect may not be a significant factor to affect the electrical conductivity of the CGO/MgO composites.

A Study on the Solidification of Heavy Metal Ion by Phosphate Magnesia Cement (인산염 마그네시아 시멘트에 의한 중금속 이온 고정화에 관한 연구)

  • Choi, Hun;Choi, Jung-Ok;Kang, Hyun-Ju;Song, Myong-Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.321-322
    • /
    • 2009
  • when the polluted soil with heavy metal ions was solidified using magnesia-phosphate cement, heavy metal ions were rarely eluted. Furthermore, the results cf SEM-EDS analysis showed that heavy metal ions in polluted soil turns into insoluble solid solution by magnesia-phosphate cement, it come to have the effect to stabilize heavy metals.

  • PDF

Effect of Minor Additives on the MgO Creep (MgO의 고온 Creep에 미치는 미량 첨가물의 영향)

  • Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.3
    • /
    • pp.182-186
    • /
    • 1977
  • Compression creep of polycrystalline magnesia at about 1$600^{\circ}C$ under 5-40kg/$\textrm{cm}^2$ was examined, and also the effects on it of minor additives such as B2O3, CaO and SiO2 were examined. The high temperature creep of high purity magnesia was primarily controlled by the Nabarro-Herring type lattice diffusion of Mg in magnesia. B2O3 was included in the molten state and showed on increasing B2O3 contents. Some of the CaO and SiO2 were also included in the molten state, promoted the grain boundary sliding, so that creep rate was increased with an increasing content of them.

  • PDF

Influence of $TiO_2$ on Sintering and Microstructure of Magnesia (마그네시아의 소결과 미세구조에 미치는 $TiO_2$의 영향)

  • 이윤복;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.471-476
    • /
    • 1994
  • The influence of TiO2 addition on the sintering and microstructure of magnesia ceramics was studied. An excess amount of TiO2 over the solid solubility limit reacted with magnesia to form Mg2TiO4 compound above 130$0^{\circ}C$. The deviation of lattice parameter of MgO was estimated to be under 0.2% when existence of TiO2 in MgO. The addition of TiO2 markedly promoted the densification of MgO at comparatively low temperature and the sintered density of about 98% of the theorectical was obtained at 150$0^{\circ}C$, 2h. The densification was mainly governed by grain growth of MgO and the effect of Mg2TiO4 existing as a second phase on depression of grain growth of MgO was not exhibited.

  • PDF