Abstract
Compression creep of polycrystalline magnesia at about 1$600^{\circ}C$ under 5-40kg/$\textrm{cm}^2$ was examined, and also the effects on it of minor additives such as B2O3, CaO and SiO2 were examined. The high temperature creep of high purity magnesia was primarily controlled by the Nabarro-Herring type lattice diffusion of Mg in magnesia. B2O3 was included in the molten state and showed on increasing B2O3 contents. Some of the CaO and SiO2 were also included in the molten state, promoted the grain boundary sliding, so that creep rate was increased with an increasing content of them.