• Title/Summary/Keyword: Maglev System

Search Result 295, Processing Time 0.029 seconds

Review the laws for the commercialization of the Maglev Train System (도시형 자기부상철도 실용화를 위한 법령검토)

  • Lee, Young-Hoon;Byun, Yun-Sub;Kim, Min-Soo;Choi, Eun-Soo;Lee, Kwan-Sup
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1004-1016
    • /
    • 2006
  • The Maglev Train System in Korea has been developed as a type of Light Rail Transit systems meanwhile. LRT systems which is a type of Urban Railway System, has been standardizing and some of them are prescribed but the Maglev System is not in the law. Along with planning the Urban Maglev Train Commercialization Project in recent time additionally, we reviewed the contents of the laws for the commercialization of the system, and emerged the way to revise the relative laws.

  • PDF

A Study on Design of Linear Motor for Maglev for High Efficiency (자기부상열차 추진용 리니어모터 효율향상 설계연구)

  • Kim, Youn-Hyun;Kim, Ki-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.561-566
    • /
    • 2016
  • In this paper, effective design method of linear induction motor(LIM) for Maglev is proposed in order to maximize system efficiency of Maglev. For the high system efficiency of Maglev, it is important to minimize weight of traction motor. Light weight design by changing materials of core and winding is conducted without changing volume of LIM. For the silicon steel core of primary part for magnetic flux path, iron-cobalt alloy steel with high magnetic saturation characteristic compared to silicon steel is suggested. Moreover, aluminium winding with light weight instead of copper winding is wounded in the widen slot area due to the high magnetic saturation level. For the verification of performance of proposed model, the characteristics are analyzed by using finite element method(FEM).

Development of small-scaled Magnetically Levitated Train operation system (축소형 자기부상열차 운행 시스템 개발)

  • Sung, H.K.;Jung, B.S.;Jang, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.256-258
    • /
    • 2004
  • It is not easy to apply new algorithm to the vehicle under driving test because the principle and moving characteristic of Magnetically Levitated Train(Maglev) developed in KIMM have been not easily analyzed yet. So, in this paper the small-scaled Maglev which can experiment economically and analyze moving-characteristic is proposed. Proposed small-scaled Maglev have the same principle and function as that of Maglev but it is smaller than real system at the ration of 1 to 7.

  • PDF

Dynamic Simulation for Modules of a Magnetically-Levitated Vehicle (자기부상열차 모듈의 동특성 시뮬레이션)

  • Kim, Jong-Moon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.653-660
    • /
    • 2006
  • In this paper, dynamic simulation results for modules of a magnetically-levitated(Maglev) vehicle are presented. The mathematical dynamic models for the Maglev vehicle are firstly derived. The Maglev system consists of one vehicle, two half-bogies, one guideway, four secondary suspensions, eight electromagnets and levitation control systems. Also, the dynamic characteristics are analysed by using the derived models. Finally, two simulations such as reference airgap step change of 1mm and rail step change of 1mm, are carried out. The dynamic simulation results are shown to testify the developed dynamic simulation program. From the results, we can see the possibility of the dynamic simulation program to develop a new Maglev vehicle system.

Status of Korean Maglev Development and Commercial Application Prospects (도시형 자기부상열차 개발 및 실용화 전망)

  • Kim, In-Kun;Lee, Sang-Rok;Cho, Hung-Je;Yoo, Mun-Hwan;Kim, Bong-Seup;Sung, Ho-Kyung;Lee, Jong-Min
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.55-62
    • /
    • 2000
  • The status of the maglev development in Korea is reported along with related commercial application prospects. The 1st test vehicle, Urban Transit Maglev-01, is in the running tests, and is now entered a new phase in which a new vehicle be built within 3 years. Eventhough Korean maglev teams made remarkable progress for 10 years since 1990, major portion of the works to prove safety and reliability remains for the future. Many LRT routes are being planned by the Korean government and UTM will find its commercial application if we can prove many merits of the maglev system plus its reliability. But the commercial application efforts did not produce any outcome at the time because the customer wasn't totally satisfied with the new system and also, they decided it wasn't urgently needed.

  • PDF

A study on the train radio system of millimeter wave method (밀리미터파방식의 열차무선시스템에 관한 고찰)

  • 조봉관
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.465-470
    • /
    • 2002
  • Construction of Yamanashi Maglev Test Line in Japan was proceeded based on "superconducting maglev Yamanshi Testline plan" approved by Ministry of Transport Government of Japan in 1990, which was performed by Yamanashi Maglev Test Line construction project team organized by personnel of Japan Railway Construction Public Corporation, RTRI and Central Japan Railway Company, and overall adjustment test was performed. Yamanashi Maglev experimental project team was organized, sponsored by RTRI and Central Japan Railway Company from April in 1997. Running test for the application was performed by this project team. Technical availability was proved by "superconducting maglev committee" of Ministry of Transport Government in March, 2000. In this paper, train radio system by LCX and by millimeter wave will be reviewed.

  • PDF

A Study on the Design of Transverse Flux Linear Motor in Combination with the Magnetic Levitation and Guidance (자기부상 열차용 부상 및 안내 결합형 횡자속 선형 전동기 설계에 관한 연구)

  • Gang, Do-Hyeon;Kim, Mun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.102-109
    • /
    • 2000
  • The magnetically levitated system technology is highly expected to contribute the new transportation system of the 21st century with its high velocity operation, better riding comforts, friendliness to environment and saving of maintenance labour. Its development has been completed in low speed and in high speed application. In 2005, the Transrapid with 430 km/h speed will go into operation between Berlin and Hamburg[1]. In the year 2000, the realization of JR-Maglev will be basically evaluated for commercial operation[2]. In korea, maglev test vehicle with magnet for levitation and single sided linear induction motor for propulsion is under test at 1 [km] test track in KIMM.[3,4] Here, a transverse flux linear motor in combination with the levitation and the guidance leads to a considerable high power density and high efficiency simultaneously. The designed and measured performance of transverse flux linear motor for maglev system revealed a great potential of system mass reduction.

  • PDF

Performance Test and Safety Evaluation of EMS Type Urban Tranit Maglev System(I) (상전도자기부상식 도시형 자기부상열차의 주행성능시험 및 평가(I))

  • Jo, Heung-Je;Kim, In-Geun;Kim, Chun-Gyeong;Yu, Mun-Hwan;Lee, Jong-Min
    • 연구논문집
    • /
    • s.26
    • /
    • pp.5-14
    • /
    • 1996
  • Test results of electromagnetic suspension (EMS) type urban transit maglev system are reported. Electromagnetic levitation system is a transportation system taking advantage of the attraction of normal conducting electromagnets to support and guide the train in combination with the linear induction traction motors. Urban Transit Maglev (UTM) Which is being developed by the maglev team in KIMM and the Hyundai Precision Company since 1995 consists of three bogies. In the first year, two types of Bogies are developed. Bogie I uses an analog controller for levitation and guidance control and is driven by two linear induction motors (LIM) mounted on the right and left side of module. Bogie II uses a digital controller and is driven by one LIM mounted along the center line of the bogie. Test results reported in this paper are those obtained with Bogie II with a digital controller. Also included in this paper is a brief explanation of the electromagnetic suspension levitation system which is being developed by the maglev team in KIMM.

  • PDF

Making Practical Use of Urban MAGLEV System : How to Perform the Feasibility Study (도시형 자기부상열차 실용화사업 타당성조사 추진방안)

  • Kim, Yeon-Gu;Kim, Hun
    • Proceedings of the KSR Conference
    • /
    • 2006.05a
    • /
    • pp.34-45
    • /
    • 2006
  • Making practical use of urban MAGLEV system which is tried by government includes technique development and railway construction. Because huge amount of money will be spent on this project, feasibility study is being carried out in order to check the feasibility and to devise the master plan in prior to making practical use of urban MAGLEV system. The key issues of feasibility study are possibility of technique development, economical feasibility, location of a model railway and the improvement of related laws and regulations. This paper shows the approach to solve these key issues.

  • PDF

Principal and Application of Velocity Detection Signal Device Applied in Tarin Control System of Maglev Train (자기부상열차 열차제어시스템에 적용되는 속도검출장치 원리 및 적용사례)

  • Kim, Young-Taek;Cho, Dong-Il;Lee, Oh-Hyun;Park, Hee-Jun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1108-1114
    • /
    • 2011
  • In general, railway system uses wheels so detecting speed by tachometer. However, LRT(Light Rail Transits) stands out recently as alternatives transportation, and besides of that Maglev trains are emerged as an alternative means of transportation. Maglev operates above certain heights caused inability of the measurement by tachometer which used to detect speed of wheels. Velocity Detection Signal Device of Train Control System applied in "Train Control System Project of Pilot Line Construction for Urban MAGLEV Train" which is prepared ahead of opening in 2013. This paper, therefore, explains the function and operation principal of Velocity Detection Signal Device, and suggests installation method of velocity detection loop installed around the track.

  • PDF