• Title/Summary/Keyword: Macroscopic Model

Search Result 282, Processing Time 0.022 seconds

Prediction for Thickness and Fracture of Stainless Steel-Aluminum-Magnesium Multilayered Sheet during Warm Deep Drawing (온간 딮 드로잉에서 이종금속판재(STS430-Al3004-AZ31)의 파단 및 두께 예측을 위한 연구)

  • Lee, Y.S.;Lee, K.S.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • It is difficult to estimate the properties of multilayered sheet because they are composed of one or more different materials. Plastic deformation behavior of the multilayered sheet is quite different as compared to each material individually. The deformation behavior of multilayered sheet should be investigated in order to prevent forming defects and to predict the properties of the formed part. In this study, the mechanical properties and formability of stainless steel-aluminum-magnesium multilayered sheet were investigated. The multilayered sheet needs to be deformed at an elevated temperature because of its poor formability at room temperature. Uniaxial tensile tests were performed at various temperatures and strain rates. Fracture patterns changed mainly at a temperature of $200^{\circ}C$. Uniform and total elongation of multilayered sheet increased to values greater than those of each material when deformed at $250^{\circ}C$. The limiting drawing ratio (LDR) was obtained using a circular cup deep drawing test to measure the formability of the multilayered sheet. A maximum value for the LDR of about 2 was achieved at $250^{\circ}C$, which is the appropriate forming temperature for the Mg alloy. Fracture patterns on a circular cup and thickness of formed part were predicted by a rigid-viscoplastic FEM analysis. Two kinds of modeling techniques were used to simulate deep drawing process of multilayered sheet. A single-layer FE-model, which combines the three different layers into a macroscopic single layer, predicted well the thickness distribution of the drawn cup. In contrast, the location and the time of fracture were estimated better with a multi-layer FE model, which used different material properties for each of the three layers.

Reassessment of viscoelastic response in steel-concrete composite beams

  • Miranda, Marcela P.;Tamayo, Jorge L.P.;Morsch, Inacio B.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.617-631
    • /
    • 2022
  • In this paper the viscoelastic responses of four experimental steel-concrete composite beams subjected to highly variable environmental conditions are investigated by means of a finite element (FE) model. Concrete specimens submitted to stepped stress changes are also evaluated to validate the current formulations. Here, two well-known approaches commonly used to solve the viscoelastic constitutive relationship for concrete are employed. The first approach directly solves the integral-type form of the constitutive equation at the macroscopic level, in which aging is included by updating material properties. The second approach is postulated from a rate-type law based on an age-independent Generalized Kelvin rheological model together with Solidification Theory, using a micromechanical based approach. Thus, conceptually both approaches include concrete hardening in two different manners. The aim of this work is to compare and analyze the numerical prediction in terms of long-term deflections of the studied specimens according to both approaches. To accomplish this goal, the performance of several well-known model codes for concrete creep and shrinkage such as ACI 209, CEB-MC90, CEB-MC99, B3, GL 2000 and FIB-2010 are evaluated by means of statistical bias indicators. It is shown that both approaches with minor differences acceptably match the long-term experimental deflection and are able to capture complex oscillatory responses due to variable temperature and relative humidity. Nevertheless, the use of an age-independent scheme as proposed by Solidification Theory may be computationally more advantageous.

A Study on Information Collection and Idea Creation Using Drones (드론을 활용한 정보수집 및 아이디어 창출에 관한 연구)

  • Jo, Hwani;Yoo, Jaewon;Choi, Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.117-124
    • /
    • 2024
  • The objective of Value Engineering (VE) is to derive the optimal value at the most efficient life cycle cost, comprising three stages: Pre-Study, Study, and Post-Study. In this study, we propose a method for information collection and analysis during planned site visit surveys in the preparation stage of VE. The 3D spatial model, created using a drone, facilitated observation and analysis of the study area from various angles, both from the center and the outside. Additionally, through the utilization of drones, we conducted on-site investigations of the research area's 3D spatial model, enabling a macroscopic perspective previously only feasible through a microscopic viewpoint during planned site visits in the pre-study phase. Furthermore, the utilization of actual spatial data obtained from observations allowed for real-time information verification during Design VE workshops, enhancing the efficiency and reliability of the VE project.

Analysis of Urban Network Operability and Crash Risk Change Caused by Rainfall Using Two-fluid Model Parameters (Two-fluid Model 파라미터를 활용한 강우에 따른 도시부 네트워크 운영성 및 위험도 변화 분석)

  • Lee, Jaehyeon;Moh, Daesang;Kim, Sunho;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.167-175
    • /
    • 2020
  • The Two-fluid Model, proposed by Herman and Prigogine in 1979, is a macroscopic model for describing network operability in urban networks. Since the Two-fluid Model parameters change according to the traffic flow characteristics, it is necessary to identify the cause of flow change when analyzing the operability using the parameters. This study compared the crash risk according to rainfall using the Two-fluid Model parameters, and explained that the driving behavior affects the operability of the urban network. The results of the parameters estimation showed poor network operation under rainfall condition. The factors of drivers' crash risk perception model were calculated, and driving behavior was analyzed due to crash risk according to rainfall. In both the morning and evening, drivers tended to slow down their speeds to reduce the crash risk, because the risk on rainy days could be high when the speed was the same as on a sunny days. However, the crash risk was still higher on rainy days than sunny. In the future, it is necessary to analyze the relationship between the network operation and the crash risk in various networks and to improve both.

Analysis of Scientific Models in Science Textbooks for the 7th Grade (중학교 과학 교과서 물질 영역의 과학적 모형 유형 분석)

  • Kim, Ae-Jung;Park, Hyun-Ju;Kim, Chan-Jong;Kim, Heui-Baik;Yoo, June-Hee;Choe, Seung-Urn
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.3
    • /
    • pp.363-370
    • /
    • 2012
  • The purpose of the study was to classify scientific models in the seventh grade science textbooks of the 2007 revised science curriculum. The three chapters of 'three states of material', 'motion of molecule', and 'change of state and energy' were investigated. There were two types of the scientific model as 'mode of representation' and 'attribute of representation'. The mode of representation was composed of 'action model', 'analogical model', 'symbolic model', and 'theoretical model' and the attribute of representation was composed of 'static model' and 'dynamic model'. The results showed that the action model and the analogical model were used primarily in mode of representation. The dynamic model were widely used in attribute of representation. Area of matters dealt with conception of molecules and aimed for students to understand the arrangement and movement of molecule microscopically about macroscopic state in a daily life. Tis study could help to recognize the limitations of scientific models on current textbooks and offer more useful information in planning lessons and organizing textbooks for the future.

Analysis of the effect of the top-down teaching method for training of developing contents based on smart media

  • Ku, Jin-Hee
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.64-69
    • /
    • 2011
  • Recently, as smart devices are distributed more and more, the need for education of developing contents based on smart media increases. In order to develop contents based on smart media, it is necessary to learn new programming language as well as to understand the structure of platforms as device-manufacturers and communication companies have different platforms. Generally, the problem in education of programming is that it can provide learning to understand the language stage by stage, but it is difficult to suggest a clear result such as completion of learner's project from macroscopic and integrated approach. Especially, there is a difficult of learning several programming languages due to the characteristics of platforms in developing smart contents. Accordingly, in the education of programming for developing smart contents, it is not appropriate to use the traditional teaching method of programming which conducts projects from an integrated point of view after learning the grammatical elements of the language. This paper aims to suggest the top-down teaching method as an effective teaching method for developing contents based on smart media, and to analyze the effect after developing and applying the suggested teaching model.

Investigation on glass transition temperature of low density polyethylene by the characteristics of temperature dependent linear expansion (선팽창 온도특성에 의한 저밀도 폴리에틸렌의 유리 천이온도에 대한 고찰)

  • 김봉흡;강도열;김재환
    • 전기의세계
    • /
    • v.30 no.7
    • /
    • pp.441-447
    • /
    • 1981
  • As a preceeding work for the study on dielectric characterstics of a kind of low density polyethylene introduced morphological change by mechanical method, glass transition temperature which is regarded as a macroscopic aspect for relaxation of molecular chain segments has been observed by means of temperature dependent dilatometric measurement. The origina specimen clearly shows two knees which correspond to two peaks (.gamma. and .betha. peak) in the intenal friction measurement, suggesting the existence of separated glass transition temperatures at 150.deg.k and 260.deg.k respectively. On the specimen irradiated to 100 Mrad both glass transition temperatures tend to shift towards high temperature sides because of crosslinking by irradiation. furthemore an evidence can be seen that radiation effect, even in amorphous phase, is also slelctive depending on slight morphological differences. The specimen extended to four times in length shows a peculiar nature such as negative linear thermal expansion coefficient increasing with temperature between 220.deg.k and ambient temperature and that this fact is interpreted by considering that c axis of the lattice aligns along the extended direction by drawing, further c axis inherently possesses the characteristics of negative linear thermal expansion coefficient. For the observations that the relatively small positive linear expansion on the specimen extended to ca. two times as well as the part below 220.deg.k of the specimen extended to four times, it is considered for the reason of the facts that the incompletely oriented region indicated as the middle part of Peterlin's model tends to restore partially to orginal arrangement-a kind of phase transition-as increasing with temperature.

  • PDF

Lactobacillus sakei S1 Improves Colitis Induced by 2,4,6-Trinitrobenzene Sulfonic Acid by the Inhibition of NF-κB Signaling in Mice

  • Jang, Se-Eun;Min, Sung-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.71-78
    • /
    • 2020
  • Lactobacillus sakei S1 strongly inhibits the expression of interleukin (IL)-6 and IL-1β in lipopolysaccharide-induced peritoneal macrophages by a mechanism for which lactic acid bacteria from kimchi that inhibit tumor necrosis factor-alpha (TNF-α) were isolated. Therefore, we further evaluated the protective effect of this strain on the colitis mouse model induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS significantly elevated myeloperoxidase (MPO) expression, macroscopic scores, and colon shortening. Oral L. sakei S1 administration resulted in reduction of TNBS-induced loss in body weight, colon shortening, MPO activity, expression of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB). L. sakei S1 inhibited the expression of inflammatory cytokines IL-1β, IL-6 and TNF-α, induced by TNBS, but enhanced IL-10 expression. L. sakei S1 showed resistance to artificial digestive juices and adherence to intestinal epithelial Caco-2 cells. Thus, L. sakei S1 may inhibit the NF-κB pathway and be used in functional food to treat colitis.

A New Tangent Stiffness for Anisotropic Elasto-Viscoplastic Analysis of Polycrystalline Deformations (다결정재 소성변형의 탄소성 해석을 위한 접선강성 개발)

  • Yoon, J.H.;Huh, H.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.349-352
    • /
    • 2006
  • The plastic deformation of polycrystalline materials is induced by changes of the microstructure when the loading is beyond the critical state of stress. Constitutive models for the crystal plasticity have the common objective which relates microscopic single crystals in the crystallographic texture to the macroscopic continuum point. In this paper, a new consistent tangent stiffness for the anisotropic elasto-viscoplastic analysis of polycrystalline deformation is developed, which can be used in the finite element analysis for the slip-dominated large deformation of polycrystalline materials. In order to calculate the consistent tangent stiffness, the state function is defined based on the consistency condition between the elastic and plastic stress. The rate of shearing increment($\Delta{\gamma}^{\alpha}$) is calculated with satisfying the consistency condition. The consistency condition becomes zero when the trial resolved shear stress($\tau^{{\alpha}^*}$) becomes resolved shear stress($\tau^{\alpha}$) at every step. Iterative method is utilized to calculate the rate of shearing increment based on the implicit backward Euler method. The consistent tangent stiffness can be formulated by differentiating the rate of shearing increment with total strain increment after the instant rate of shearing increment converges. The proposed tangent stiffness is applied to the ABAQUS/Standard by implementing in the ABAQUS/UMAT.

  • PDF

Numerical Study on Hydrogen Absorption and Expansion Behavior on Palladium (팔라듐에 관한 수소저장과 팽창거동에 관한 수치해석)

  • Kim, S.W.;Hwang, C.M.;Jang, T.I.;Jung, Y.G.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.256-264
    • /
    • 2007
  • In order to calculate the relation between the hydrogen and the hydrogen absorption metals in the atomic level, Embedded Atom Method(EAM) is recommended. In this study, we had constructed the EAM programs from constitutive formulas and parameters of the hydrogen and palladium for the purpose of predicting the expansion behavior on hydrogen absorbing in the geometric shape of hydrogen absorption metals, as palladium bars and plates. And the EAM analyses data were compared with the experiment data by using electrochemical method. As results, it is note that the expansion rate in thickness of the palladium plate model by EAM analyses is about 4 times larger than width and length, be similar to experiment results. Also, in the microscopic and macroscopic level the expansion behavior through EAM analyses show good agreement with experiment data.