DOI QR코드

DOI QR Code

Analysis of Urban Network Operability and Crash Risk Change Caused by Rainfall Using Two-fluid Model Parameters

Two-fluid Model 파라미터를 활용한 강우에 따른 도시부 네트워크 운영성 및 위험도 변화 분석

  • 이재현 (서울대학교 건설환경공학부) ;
  • 모대상 (서울대학교 건설환경공학부) ;
  • 김선호 (서울대학교 건설환경공학부) ;
  • 이청원 (서울대학교 건설환경공학부)
  • Received : 2019.12.31
  • Accepted : 2020.02.05
  • Published : 2020.04.01

Abstract

The Two-fluid Model, proposed by Herman and Prigogine in 1979, is a macroscopic model for describing network operability in urban networks. Since the Two-fluid Model parameters change according to the traffic flow characteristics, it is necessary to identify the cause of flow change when analyzing the operability using the parameters. This study compared the crash risk according to rainfall using the Two-fluid Model parameters, and explained that the driving behavior affects the operability of the urban network. The results of the parameters estimation showed poor network operation under rainfall condition. The factors of drivers' crash risk perception model were calculated, and driving behavior was analyzed due to crash risk according to rainfall. In both the morning and evening, drivers tended to slow down their speeds to reduce the crash risk, because the risk on rainy days could be high when the speed was the same as on a sunny days. However, the crash risk was still higher on rainy days than sunny. In the future, it is necessary to analyze the relationship between the network operation and the crash risk in various networks and to improve both.

1979년 Herman과 Prigogine에 의해 제안된 Two-fluid Model은 도시부 네트워크의 운영성을 설명하는 거시적인 모형으로서 네트워크 내 정지차량 비율과 평균 주행속도의 관계에 기초하고 있다. 이러한 Two-fluid Model의 파라미터는 교통류 특성에 따라 변화하므로 파라미터를 통한 운영성 분석 시 교통류 상태 변화를 규명하는 단계가 수반되어야 한다. 이에 본 연구는 Two-fluid Model의 파라미터를 활용하여 강우에 따른 교통사고 위험도를 비교하였고, 이로 인한 주행 행태가 도시부 네트워크의 운영성에 영향을 미침을 확인하였다. 먼저 Two-fluid Model 파라미터 추정결과, 맑은 날 대비 비가 온 날의 네트워크 운영성이 저하된 것으로 나타났다. 이후 운전자의 교통사고 위험인지 모형 계수를 산출하고 강우 여부에 따른 교통사고 위험도와 그에 따른 주행 행태 변화를 분석하였다. 오전·오후 시간대 모두 운전자는 맑은 날과 동일한 속도를 유지하였을 때 비가 온 날의 교통사고 위험도가 높을 수 있기 때문에, 위험도를 낮추기 위해 주행속도를 감속하는 경향을 보였다. 그러나 맑은 날 보다 비가 온 날의 위험도는 여전히 높은 것으로 파악되었다. 향후에는 도시부 교통망의 거시적 운영성과 사고 위험도 간의 관계를 보다 다양한 네트워크에서 분석하고 동시에 개선할 수 있는 방안을 연구해볼 필요가 있겠다.

Keywords

References

  1. Ardekani, S. and Herman, R. (1987). "Urban network-wide traffic variables and their relations." Transportation Science, Vol. 21, No. 1, pp. 1-16. https://doi.org/10.1287/trsc.21.1.1
  2. Ayadh, M. T. (1986). Influence of the city geometric features on the two fluid model parameters, Doctoral dissertation, Virginia Tech, Blacksburg, USA.
  3. Charlton, S. G., Starkey, N. J., Perrone, J. A. and Isler, R. B. (2014). "What's the risk? A comparison of actual and perceived driving risk." Transportation research part F: traffic psychology and Behaviour, Vol. 25, pp. 50-64. https://doi.org/10.1016/j.trf.2014.05.003
  4. Dixit, V. V. (2013). "Behavioural foundations of two-fluid model for urban traffic." Transportation Research Part C: Emerging Technologies, Vol. 35, pp. 115-126. https://doi.org/10.1016/j.trc.2013.06.009
  5. Dreze, J. and Stern, N. (1987). "The theory of cost-benefit analysis." In Handbook of Public Economics, Vol. 2, pp. 909-989.
  6. Herman, R. and Ardekani, S. (1984). "Characterizing traffic conditions in urban areas." Transportation Science, Vol. 18, No. 2, pp. 101-140. https://doi.org/10.1287/trsc.18.2.101
  7. Herman, R. and Prigogine, I. (1979). "A two-fluid approach to town traffic." Science, Vol. 204, No. 4389, pp. 148-151. https://doi.org/10.1126/science.204.4389.148
  8. Herman, R., Malakhoff, L. A. and Ardekani, S. A. (1988). "Trip time-stop time studies of extreme driver behaviors." Transportation Research Part A: General, Vol. 22, No. 6, pp. 427-433. https://doi.org/10.1016/0191-2607(88)90046-5
  9. Jayakrishnan, R., Mattingly, S. P. and McNally, M. G. (2001). "Performance study of SCOOT traffic control system with non-ideal detectorization: field operational test in the city of Anaheim." In Transportation Research Board 80th Annual Meeting, Washington, D.C., USA.
  10. Kim, et al. (2014). Safe environment against traffic accidents, Korea Research Institute for Human Settlements (in Korean).
  11. Lee, C. and Kwon, B. C. (2003). "Macroscopic impact of snowing and raining on urban transportation network." Seoul Studies, Vol. 4, No. 1, pp. 13-22 (in Korean).
  12. Mohring, H. (1965). "Urban highway investments." Measuring benefits of government investments, Brookings Institution, Washington, D.C., USA, pp. 231-291.
  13. O'neill, B. (1977). "A decision-theory model of danger compensation." Accident Analysis & Prevention, Vol. 9, No. 3, pp. 157-165. https://doi.org/10.1016/0001-4575(77)90017-3
  14. Parkin, J. M. and Wu, S. Y. (1972). "Choice involving unwanted risky events and optimal insurance." The American Economic Review, Vol. 62, No. 5, pp. 982-987.
  15. Tarko, A. P. (2009). "Modeling drivers' speed selection as a trade-off behavior." Accident Analysis & Prevention, Vol. 41, No. 3, pp. 608-616. https://doi.org/10.1016/j.aap.2009.02.008
  16. Taylor, D. H. (1964). "Drivers' Galvanic Skin Response and the Risk of Accident." Ergonomics, Vol. 7, No. 4, pp. 439-451. https://doi.org/10.1080/00140136408930761
  17. Vo, P. T., Mattingly, S. P., Ardekani, S. and Dilshad, Y. (2007). "Comparison of quality of service in two central business districts: two-fluid model approach in Texas." Transportation Research Record, Vol. 1999, No. 1, pp. 180-188. https://doi.org/10.3141/1999-19
  18. Wu, S. K., Hunter, M. P., Lee, C. and Rodgers, M. O. (2011). "Evaluation of traffic signal control system using a system-wide performance measure under two-fluid model theory." KSCE Journal of Civil Engineering, KSCE, Vol. 15, No. 2, pp. 395-403. https://doi.org/10.1007/s12205-011-1087-y